

Searches for new physics using long-lived particles and other non-conventional signatures with the CMS detector **DPF 2019** Todd Adam Florida State University

on behalf of the CMS Collaboration

Long-lived and Non-conventional

- CMS has an extensive program to search for new physics
 - >500 papers
 - most assume new particles are very short-lived
- Reasons to think that new particles may be long-lived
 - many models make predictions
 - SUSY small couplings, small mass splittings
 - hidden valley models
 - standard model (SM) has numerous examples of long-lived particles
 - muon, pion, kaon, neutron, hyperons, etc.
- CMS has developed a diverse program of searches for new, long-lived particles (LLPs)

Challenges

- (A) Detectors not optimized for long-lived particles
- (B) Algorithms not optimized for long-lived particles
 - both obvious and subtle effects
 - many steps that reduce backgrounds from multiple interactions per bunch crossing also reduce discovery of LLPs
 - example: require particles to be in time with bunch crossing
 - many assumptions that make code faster also reduce discovery
 - example: only fitting combinations of hits in tracker that point to interaction vertex...
 - ...or only reconstructing combinations that curve in r-phi plane (problematic for magnetic monopoles or quirks)

(C) Analyses (often) not optimized for long-lived particles

We can overcome (C) and (B) and to some extent (A)

Long-lived searches

- Many searches
- Wide range of lifetimes explored

Overview of CMS long-lived particle searches

Two recent results presented today

Delayed Photons EXO-19-005

- Neutral LLP decaying to photon (and other particles)
- Use timing in ECAL
 - custom out-of-time photon reconstruction
- Also require missing transverse energy (MET)

2016	2017
35.9 fb ⁻¹	41.5 fb ⁻¹
Diphoton trigger (95% effic. after offline selection)	Dedicated displaced photon + H_T trigger (99.9% effic. after offline selection)

Signal model Gauge mediated supersymmetry breaking

Neutralino is long-lived

ECAL timing resolution

- ECAL timing resolution important
- Resolution measured by comparing timing from alike channels
- Resolution reaches a plateau at high energy

Data and background

- Use ABCD background estimate
 - use photon time and MET

- Optimize selection for each signal point
- Fit for signal+background in each region simultaneously

Year /	Bin Split		Δ.	D	C	
Category	$[t_{\gamma} \text{ (ns)}, p_{\mathrm{T}}^{\mathrm{miss}} \text{ (GeV)}]$		A	D	C	D
2016γγ	(0, 250)	N ^{data}	16139	41	62	18826
		$N_{\rm bkg}^{\rm post-fit}$	16133 ± 114	47.5 ± 4.8	55.6 ± 5.6	18832 ± 130
		$N_{ m bkg(mask)}^{ m post-fit}$	16139 ± 114	41.0 ± 6.5	47.8 ± 7.7	18826 ± 130
	(1.5, 100)	N ^{data} obs	33760	1302	1	5
		$N_{\rm bkg}^{\rm post-fit}$	33759 ± 164	1303 ± 37	0.29 ± 0.28	5.7 ± 2.2
		$N_{ m bkg(mask)}^{ m post-fit}$	33761 ± 165	1302 ± 37	0.19 ± 0.21	5.0 ± 2.1
		N ^{data}	34595	467	0	6
	(1.5, 150)	$N_{ m bkg}^{ m post-fit}$	34596 ± 166	467 ± 22	0.08 ± 0.08	5.9 ± 2.3
		$N_{ m bkg(mask)}^{ m post-fit}$	34596 ± 167	467 ± 22	0.08 ± 0.09	6.0 ± 2.3
		Nobs	458372	281	41	67655
	(0.5, 300)	$N_{ m bkg}^{ m post-fit}$	458368 ± 660	281 ± 15	41.4 ± 2.4	67656 ± 280
		$N_{\rm bkg(mask)}^{\rm post-fit}$	458369 ± 662	281 ± 16	41.5 ± 2.7	67657 ± 281
2017γ	(1.5, 200)	N ^{data}	524652	1364	1	332
		$N_{ m bkg}^{ m post-fit}$	524653 ± 706	1364 ± 36	0.9 ± 0.8	332 ± 20
		$N_{\rm bkg(mask)}^{\rm post-fit}$	524653 ± 704	1364 ± 35	0.9 ± 1.0	332 ± 20
		N ^{data} obs	525694	322	0	333
	(1.5, 300)	$N_{\rm bkg}^{ m post-fit}$	525694 ± 707	322 ± 17	0.19 ± 0.21	333 ± 20
		$N_{ m bkg(mask)}^{ m post-fit}$	525694 ± 704	322 ± 17	0.20 ± 0.24	333 ± 20
2017γγ	(0.5, 150)	N ^{data}	21640	362	56	3201
		$N_{\rm bkg}^{ m post-fit}$	21638 ± 143	364 ± 17	54.0 ± 3.0	3203 ± 61
		$N_{ m bkg(mask)}^{ m post-fit}$	21639 ± 143	362 ± 18	53.6 ± 3.3	3201 ± 61
		N ^{data} obs	21863	139	24	3233
	(0.5, 200)	$N_{ m bkg}^{ m post-fit}$	21860 ± 144	142 ± 11	21.1 ± 1.7	3236 ± 61
		$N_{\rm bkg(mask)}^{\rm post-fit}$	21863 ± 144	139 ± 11	20.6 ± 1.8	3233 ± 61
	(1.5, 150)	N ^{data}	24824	418	0	17
		$N_{ m bkg}^{ m post-fit}$	24824 ± 154	418 ± 20	0.25 ± 0.28	16.7 ± 4.4
		$N_{\rm bkg(mask)}^{\rm post-fit}$	24824 ± 154	418 ± 20	0.29 ± 0.36	17.0 ± 4.4
		N ^{data}	25079	163	0	17
	(1.5, 200)	$N_{ m bkg}^{ m post-fit}$	25079 ± 154	163 ± 12	0.11 ± 0.12	16.9 ± 4.4
		$N_{\rm bkg(mask)}^{\rm post-fit}$	25079 ± 154	163 ± 12	0.11 ± 0.14	17.0 ± 4.4

July 29, 2019

Long-lived Particles and Non-Conventional Signatures at CMS - T. Adams

Delayed photon results

- No significant excess observed
- Limits set on GMSB SPS8 model
 - mass and lifetime dependent

Non-prompt Jets arXiv:1906.06441 [hep-ex]

- Search for events with late arriving jets
- Use ECAL timing
- Sensitive to decays beyond acceptance of tracker
- Also, require missing transverse momentum (p_T^{miss})
- 2016-2018 data
- Model based on GMSB with long-lived gluino

Overcoming Challenges

- Jets reconstructed with calorimeter energy
 - not using particle flow (PF) jets which require reconstructed tracks
 - non-prompt jets may not produce reliable information in the tracker
 - out-of-time energy deposits not included in PF jets
- Jet timing
 - all ECAL cells within ΔR <0.4 of jet axis and E>0.5 GeV
 - use only cells within -20 ns < t < 20 ns of bunch crossing
 - t_{jet} is median cell time
- p_T^{miss} calculated with calorimeter energy
 - not using PF MET
 - p_T^{miss} is vector sum of calorimeter momenta deposits in event

Non-prompt jet backgrounds

- Problematic backgrounds
 - ECAL time resolution tails
 - Electronic noise
 - Direct ionization in the ECAL APDs
 - In-time pileup
 - Out-of-time pileup
 - Satellite bunches
 - Beam halo
 - Cosmic ray muon hits

- Numerous selections used to reduce backgrounds
 - E_{ECAL} > 20 GeV
 - use cells with -20<t_{ECAL}<20 ns
 - t_{ECAL} > 3 ns
 - $N_{ECAL}^{cell} > 25$
 - $t_{jet}^{RMS} < 2.5 \, ns$
 - $t_{jet}^{RMS} < 0.4 t_{jet}$
 - E_{HCAL} > 50 GeV
 - $HEF = \frac{E_{HCAL}}{E_{ECAL} + E_{HCAL}} > 0.2$
 - $PV_{track}^{fraction} < 0.083$
 - $E_{ECAL}^{CSC}/E_{ECAL} < 0.8$
 - $\max(\Delta \phi_{\text{DT}}) < \pi/2$
 - $\max(\Delta \phi_{\text{RPC}}) < \pi/2$

July 29, 2019

Long-lived Particles and Non-Conventional Signatures at CMS - T. Adams

Delayed jets final sample

• Require

- at least one jet with t_{jet}>3 ns
- $p_T^{miss} > 300 \text{ GeV}$
- Estimate backgrounds from control regions with inverted selection

Background source	Events predicted	
Beam halo muons	$0.02^{+0.06}_{-0.02} (\text{stat})^{+0.05}_{-0.01} (\text{syst})$	
Core and satellite	0.11 ± 0.09 (stat) ± 0.02 (suct)	Detaile
bunch collisions	$0.11_{-0.05}$ (stat)_ -0.02 (syst)	
Cosmic ray muons	$1.0^{+1.8}_{-1.0} ({\rm stat})^{+1.8}_{-1.0} ({\rm syst})$	

Detailed info available: <u>HEPData link</u>

Limits on non-prompt jets

- No events observed
- Limits on cross section for GMSB gluino production

- CMS has performed a wide range of searches for longlived and non-conventional signatures
 - displaced leptons, delayed photons, delayed jets, disappearing tracks, heavy long-lived charged particles, stopped particles
- Signature based searches offer significant discovery potential
- Challenging analyses
- New techniques under development
- http://cms.cern/

Backup slides