Searches for Supersymmetry with tau leptons at CMS

Valentina Dutta

on behalf of the CMS Collaboration
Introduction

SUSY (still) well motivated as a theory of physics beyond the Standard Model

Rich phenomenology depending on mass hierarchy, allowed decay modes, nature of lightest supersymmetric particle (LSP)

- Many places to look
- Current constraints (usually) based on simplified models, need to be aware of assumptions
SUSY with taus

SUSY may be more hidden than we hoped but could still be accessed at the LHC with more data!

Staus could be the key, light $\tilde{\tau}$ well motivated in many models

- **Direct production**: challenging because of small cross sections
- **Indirect production**: decay chains of heavier SUSY particles

Final states with tau leptons

- τ spin-1/2
- $\tilde{\tau}$ spin-0

Light stau coannihilation with bino LSP (small Δm) could account for observed DM relic density

Cross section vs mass

- stau-anti-stau
- gluino-gluino
- squark-anti-squark
- stop-anti-stop
- electroweakino

Griest, Seckel '91
Strategy

Mainly focus on **hadronic** tau decay mode (65% BR, fewer neutrinos in final state), **leptonic** decay modes also considered for some searches

- **Particle-flow** reconstruction (charged hadrons, photons from π^0 decays) key to τ_h identification
- **Isolation** an important handle to reject fakes: *new approaches using DNNs*

Misidentified τ_h background
From other hadronic jets estimated using data-driven techniques

- Extrapolation from relaxed (“loose”) to full (“tight”) isolation

SUSY vs SM discrimination
Using **mass-related observables**, exploit p_T^{miss} from LSPs

e/\mu + v_e/\mu v_\tau

or

hadrons + v_\tau
Hadronic tau isolation

Evolution of techniques: cut-based → MVA (BDT) → DNN, significant boost in sensitivity with each advancement

DNN approach for τ_h isolation brings $\sim 2x$ reduction in fake rate with respect to BDT

- Convolutional neural network using features of particles in tau isolation cone (**low-level** inputs)
- Average CNN score with BDT score (**high-level** inputs)
Hadronic tau isolation

Evolution of techniques: cut-based → MVA (BDT) → DNN, significant boost in sensitivity with each advancement

DNN approach for τ_h isolation brings $\sim 2x$ reduction in fake rate with respect to BDT

- Convolutional neural network using features of particles in tau isolation cone (**low-level** inputs)
- Average CNN score with BDT score (**high-level** inputs)
- Extensive validation in data with $Z \rightarrow \tau\tau$
Direct stau pair production

Selection: \(\tau^+\tau^- (\tau_h\tau_h, \mu\tau_h, e\tau_h)\) final states, DNN-based isolation for \(\tau_h\tau_h\)

Search strategy: categorize events using \(N(\text{jets})\), mass-related observables for \(\tau_h\tau_h\), BDT shape analysis for \(e\tau_h, \mu\tau_h\)

\(m_{T2}\): Kinematic endpoint given by \(m(X) \rightarrow \text{minimize} \ m_T(p, q)\) solutions over possible \(p_T^{\text{miss}}\) partitions.
Direct stau pair production

$\tilde{\tau}_L\tilde{\tau}_L + \tilde{\tau}_R\tilde{\tau}_R$ production

$\tilde{\tau}_L\tilde{\tau}_L$ production

$\tilde{\tau}_L\tilde{\tau}_L + \tilde{\tau}_R\tilde{\tau}_R$: superpartners of left-/right-handed leptons. Different couplings $\rightarrow \sim 3x$ smaller cross section for $\tilde{\tau}_R\tilde{\tau}_R$ vs $\tilde{\tau}_L\tilde{\tau}_L$ of same mass

Exclusion up to $m(\tilde{\tau}) = 150$ GeV for \simmassless $\tilde{\chi}_1^0$

Pushing past LEP stau limits for the first time at the LHC!

\simmassless $\tilde{\chi}_1^0$

CMS

$77.2 \text{ fb}^{-1} (13 \text{ TeV})$

Strongest limit at $m(\tilde{\tau}) = 125$ GeV for \simmassless $\tilde{\chi}_1^0$

Submitted to Eur. Phys. J. C
Chargino/neutralino → stau

Decays via $\tilde{\tau}$ or tau-sneutrino ($\tilde{\nu}_\tau$) → same final state either way

Selection: $\tau^+\tau^-$ ($\tau_h\tau_h$, $\mu\tau_h$, $e\tau_h$, $e\mu$ final states)

Search strategy: categorize events using p_T^{miss}, m_T, Σm_T ($m_T(\tau_1) + m_T(\tau_2)$), also $N(\text{jet})$ for $\mu\tau_h$, $e\tau_h$, $e\mu$

JHEP 11 (2018) 151
Chargino/neutralino → stau

Assume $m(\tilde{\chi}_1^{\pm}) = m(\tilde{\chi}_2^0)$, $m(\tilde{\tau}) = 0.5[m(\tilde{\chi}_1^{\pm}) + m(\tilde{\chi}_1^0)]$

Small Δm challenging

Exclusion up to $m(\tilde{\chi}_1^{\pm}) = 700$ GeV for ~massless $\tilde{\chi}_1^0$

Exclusion up to $m(\tilde{\chi}_1^{\pm}) = 630$ GeV for ~massless $\tilde{\chi}_1^0$
Stop → stau

Charginos in stop decay chains
decay via $\tilde{\tau}$ or $\tilde{\nu}_\tau$

Sensitive to Higgsino-like scenarios

Selection: $\tau_h\tau_h + 2b + p_T^{miss}$

Search strategy: categorize events using p_T^{miss}, m_{T2}, H_T

CMS-PAS-SUS-19-003

Search strategy

```
CMS Preliminary  77.2 fb⁻¹ (13 TeV, 2016+2017)

<table>
<thead>
<tr>
<th>$p_T^{miss}$</th>
<th>Events / GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>10</td>
</tr>
<tr>
<td>Other SM</td>
<td>100</td>
</tr>
<tr>
<td>tt</td>
<td>1000</td>
</tr>
<tr>
<td>Fake</td>
<td>10000</td>
</tr>
<tr>
<td>Bkg. uncertainty</td>
<td>100000</td>
</tr>
</tbody>
</table>

$\tau_h\tau_h + 2b$
```
Stop → stau

\[m(\tilde{t}) \]
\[m(\tilde{\chi}_1^{\pm}) \]
\[m(\tilde{\tau}/\tilde{\nu}) \]
\[m(\tilde{\chi}_1^0) \]

Exclusion up to \(m(\tilde{t}) = 1100 \text{ GeV} \)
Outlook

Searches targeting staus a critical but challenging avenue to explore: starting to make inroads using new and powerful tools, data-driven background estimation techniques

With more data, we should be able to explore substantial new territory where new physics could be hiding

New physics??
Sensitivity for staus at HL-LHC

Significant region of $\tilde{\tau}$-LSP mass plane can be explored with 3000 fb$^{-1}$, upgraded detectors
Performance can be improved with dedicated techniques