

Search for top squark production with CMS at 13 TeV

BY MATTHEW KILPATRICK

RICE UNIVERSITY

ON BEHALF OF THE CMS COLLABORATION

7/29/19

Introduction

- Supersymmetry is a promising extension of the SM
- R-parity conservation requires stable SUSY particle known as the lightest supersymmetric particle (LSP) as is a dark matter candidate
- Allows for cancellation of the Higgs boson quadratic mass renormalization for top and top squark
- Consider neutralino as LSP

Top Squark Production

Channels

- Final states include 0,1,2 leptons
- Let's look at:
 - Single lepton (electron/muon)
 - Dilepton (2 taus in final state)
 - Zero lepton (Gravitino as LSP)

Stop 1L Search

Direct top squark search

 Isolated electron or muon final state with jets and missing transverse momentum

• Three search regions

$$\begin{split} & \circ \Delta m\left(\tilde{t},\widetilde{\chi_{1}^{0}}\right) > m_{t} \\ & \circ \Delta m\left(\tilde{t},\widetilde{\chi_{1}^{0}}\right) \sim m_{t} \\ & \circ \Delta m\left(\tilde{t},\widetilde{\chi_{1}^{0}}\right) \sim (m_{W}+m_{b}) \\ & \circ \text{Concentration on } \tilde{t}_{1} \rightarrow t\widetilde{\chi}_{1}^{0}, \tilde{t}_{1} \rightarrow b\widetilde{\chi}_{1}^{+} \text{ decay modes} \end{split}$$

Stop 1L Search

Backgrounds

- Lost lepton from two W bosons decaying leptonically, missing one of them
- ${}^{\rm o}Z \to \nu \bar{\nu}$ with single lepton from W boson

Search Strategies

• Modified topness:
$$t_{mod} =$$

$$\ln\left(\frac{\left(m_W^2 - (p_v + p_l)^2\right)^2}{a_W^4} + \frac{\left(m_t^2 - (p_b + p_W)^2\right)^2}{a_t^4}\right)$$

 $^{\rm o}$ Small values likely to be dilepton $t\bar{t}$ event, signal event likely to have large values

$${}^{\circ}M_{lb} \leq M_t \sqrt{1 - \frac{M_W^2}{M_t^2}}$$

• Other search region variables: M_{lb} , $N_{b,soft}$, N_j

Stop 1L Search

Backgrounds

- Lost lepton from two W bosons decaying leptonically, missing one of them
- ${}^{\rm o}Z \to \nu \bar{\nu}$ with single lepton from W boson

Search Strategies

• Modified topness:
$$t_{mod} =$$

$$\ln\left(\frac{\left(m_W^2 - (p_v + p_l)^2\right)^2}{a_W^4} + \frac{\left(m_t^2 - (p_b + p_W)^2\right)^2}{a_t^4}\right)$$

 $^{\rm o}$ Small values likely to be dilepton $t\bar{t}$ event, signal event likely to have large values

$${}^{\circ}M_{lb} \leq M_t \sqrt{1 - \frac{M_W^2}{M_t^2}}$$

• Other search region variables: M_{lb} , $N_{b,soft}$, N_j

Exclusion Limits

Consistent with SM backgrounds

Exclude top squarks with mass up to 1.2 TeV

• PAS-SUS-19-009

Stop: di-tau Final State

Dedicated to the di-tau final state • 77.2 fb⁻¹ from 2016/2017

 Probe MSSM where electroweak gauginos preferentially couple to third generation fermions

- Hadronically decaying tau leptons, b tagged jets, and MET
- Missing transverse momentum due to neutralinos (SUSY) or neutrinos (SM) • $m_T^2(\vec{p}_T^{vis}, \vec{p}_T^{inv})$ to distinguish SM and SUSY events

Backgrounds

• Dominated by $t\bar{t}$ processes

Data driven estimation

Di-tau Limits

Consistent with SM processesLimit on top squark mass up to 1.1 TeV

Stop with Gravitino

Models targeted motivated by gauge mediated symmetry breaking (GMSB)

Gaugino masses proportional to their couplings

• Gravitino (\tilde{G}) is LSP and Neutralino $(\tilde{\chi}_1^0)$ is next-to-LSP

Signal signature

 $^{\circ}$ Multiple jets, ≥ 1 photon, large missing transverse momentum

• Must have large photon momentum, $p_T^{\gamma} > 100(190)$ GeV, and $H_T^{\gamma} > 800(500)$ GeV

Backgrounds

• $W\gamma$ + jets and $t\bar{t}\gamma$ + jets with lost lepton or hadronic tau decay • $t\bar{t}$ + jets and W + jets where an electron is misidentified • $Z\gamma$ + jets with $Z \rightarrow v\bar{v}$ • γ + jets with large mismeasurement

Stop with Gravitino

Estimation

- Transfer factor method for lost lepton estimation
- Control region estimations with leptons in place of photons
- Search region binning: N_J , N_b , p_T^{miss}

Event yields are consistent with SM backgrounds

Limits for GMSB

Limits on top squark mass up to 1230 GeV

Summary

Comprehensive analysis of LHC Run 2 with 137 fb⁻¹ integrated luminosity from CMS
 Initial analysis give limit for top squark mass up to ~1.2 TeV
 Many more results on the way!

• Stay tuned!

- ATLAS also has interesting results see K. Yoshihara's talk next
- CMS Public SUSY Result: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS</u>

Thank You

I would like to thank Karl Ecklund (Rice), the CMS SUSY Group, and the CMS Collaboration.

Department of Physics at Rice, CMS Collaboration,

Department of Energy Grant #DE-SC0010103