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New Particles Search in Hadronic Decay

e Many theories predict new particles that decay hadronically
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e If discovered, how can we learn about the properties of these new
particles?


https://arxiv.org/pdf/1709.06783.pdf
https://arxiv.org/pdf/1905.10331.pdf

Beyond Standard Model (BSM) Particles at 125 GeV
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e Higgs was discovered in 2012
e As luminosity increases, what if there are excess events at the 125 GeV peak?
e How can we distinguish the Higgs from other new particles at the same mass? 3


https://arxiv.org/pdf/1709.05543.pdf
https://arxiv.org/pdf/1808.08238.pdf

BSM Models Mj= 125 GeV for all models
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https://arxiv.org/abs/1710.04661

Event Generation

e MadGraph5 version 2.5.5 and Pythia8 version 8.235
o pp = X(= jj)j;X€E{HZ,C,q,Sg}

e [astJet 3 version 3.3.2

o R=1.0

o Trimmed with R = 0.3 subjets and p,**?*' < 0.05 x p_
e Jet Selection

o |n|<2.0

o 300 GeV < ije‘ <600 GeV

o 100 GeV < m*'< 150 GeV

Similar to generation in: arxiv:1710.04661



https://arxiv.org/abs/1710.04661

High Level Tagger: Jet Pull Definition

Jet pull is a pT-weighted radial moment:

Legend
== Pull (vector)(Jy)
6p Pull Angle
e Constituent of Jy (size weighted by pr)
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TOPQ-2014-09/
arxiv:1001.5027
Jet pull is the state-of-the-art variable motivated by

QCD and a classical choice to capture color information



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2014-09/
https://arxiv.org/abs/1001.5027

Jet Pull Histograms

Larger color numbers (ie: S, C“) are more spread out!
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Jet-lmages

e Jet-lmages: Energy depositions of the particles are the pixel intensities
e Images are centered, pixelated to 65x65 pixels, rotated, logged, and

normalized:
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Jet-Images, All Ratios

Blue box has

gluon in decay and
similar jet-images

to H—gg

Red Region has only quark-antiquark
decay and are similar to each other
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High Level Tagger: Energy Flow (E-flow)

ldea: Sum pixel energies in rings of the jet-image to capture pattern

e The first circle has R=0.015, the rings increase R by 0.1
e The rings we chose are shown on the picture below
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E-flow Histograms

e Particles with gluons in the decay leave more deposits in the second and third
rings (E, and E,)
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Low Level Tagger: Convolutional Neural Network (CNN)

65x65 Jet-Image

11x11

o \
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o

e First layer has 8 11x11 filters, others have 16 3x3 filters
e Layer 3, 5, and 7 followed by 2x2 max-pooling layers
e Dense Layer has width 128 followed by 0.5 dropout
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CNN Optimization, Choices
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e Used Sequential Model-based Algorithm Configuration (SMAC3) to optimize
hyperparameters
e Large filter in first layer + many convolutional layers
o learns relations between the sparse, non-zero parts of image



CNN Optimization, Choices
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e Single, wide fully connected layer
o Final decisions are not complicated
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Training

e For each of the 6 processes, we have 150,000 events
e \We create 15 combinations of 300,000 events
e One process in each combination is chosen as signal
o Signal mass is reweighted to be the same distribution as the background
mass
e For jet pull and e-flow, we use a boosted decision tree and a 80-20% train-test
split
o We used Adaboost from scikit to implement the boosted decision tree
e For CNN, we do another training-validation-test split of 64-16-20%
o Made with Keras built on Tensorflow

16



Training results, ROC curves
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SIC Score

Significance improvement characteristic (SIC) Curves
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Pearson Correlation Coefficient Images

For each pixel, calculate:
E[(X — px)(Y — py)]
OxO0y

pPxXy =

where X is that pixel’s distribution and Y is the distribution of true label

H-qqvsH-gg
Pixel activations in the
red regions linearly Pixel activations in the
correlate with being a 3 1. — blue regions linearly
H->qq process  — correlate with being a
— H->gg process
19
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Z' = qq
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Dependences

Variations on pythia settings have
no impact on performance

When using only charged
particles, there is a decrease in
performance (shown right)
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Conclusion

CNN trained on jet-images is a powerful method to
distinguish particles with different radiation patterns

e Significantly better than high-level jet-pull tagger

e More specifically, particles with final states gqq~ are difficult
to distinguish
o For example: H, Cu, and Z’

e Particles with final states with g in them are difficult to
distinguish

o For example, Hadronic H, S, q’
24
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Identifying the Quantum Color Representation of New Particles with Machine
Learning
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With the great promise of deep learning, discoveries of new particles at the Large Hadron Collider
(LHC) may be imminent. Following the discovery of a new particle in an all-hadronic channel, deep
learning can also be used to identify the quantum numbers of the new particle. Convolutional
neural networks (CNNs) using jet-images can significantly improve upon existing techniques to
identify the quantum chromodynamic (QCD) representation (‘color’) of a two-prong jet using its
substructure. Additionally, jet-images are useful in determining what information in the jet radiation
pattern is useful for classification, which could inspire future taggers. These techniques improve the
categorization of new particles and are an important addition to the growing jet substructure toolkit,
for searches and measurements at the LHC now and in the future.
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Preprocessing Steps

Preprocessing:

©)

O O O O

Translate so leading subjet is origin

Pixelate to 65x65 pixels

Rotate so second subjet is directly underneath the origin
Flip horizontally so one side always has the most energy
Log and normalize

27



Peak SIC for all Combinations and Models

Model | H—g99 |H—-q7 |Cy,—qq | Ss—99|q —q9| 21— q7q
CNN 1.4041 | 1.7571 | 1.0103 | 1.0108 | 2.4413
H — gg || T-jets 1.2381 1.4955 1.0043 1.0053 1.9128
Pull 1.0000 1.0049 1.0041 1.0041 1.0050
CNN 1.4041 1.2049 | 1.6372 | 1.1791 | 1.1313
H — qg || T-jets 1.2381 1.0081 1.3710 1.0575 1.0131
Pull 1.0000 1.0043 1.0041 1.0044 1.0048
CNN 1.7571 | 1.2049 1.6471 | 1.1405 | 1.0000
Cu — q7 || T-jets 1.4955 1.0081 1.4562 1.0532 1.0034
Pull 1.0049 1.0043 1.0000 1.0000 1.0000
CNN 1.0103 | 1.6372 | 1.6471 1.0663 | 2.4969
Sz — gg || T-jets 1.0043 1.3710 1.4562 1.0515 1.9647
Pull 1.0041 1.0041 1.0000 1.0000 1.0000
CNN 1.0108 | 1.1791 | 1.1405 | 1.0663 1.5619
q" —qg || T-jets 1.0053 1.0575 1.0532 1.0515 1.2381
Pull 1.0041 1.0044 1.0000 1.0000 1.0003
CNN 2.4413 | 1.1313 | 1.0000 | 2.4969 | 1.5619
Zt — qq || T-jets 1.9128 1.9128 1.0034 1.9647 1.2381
Pull 1.0050 1.0050 1.0000 1.0000 1.0003
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