

Physics BSM with Kaons at

Roberta Volpe CP3, Université Catholique de Louvain, Belgium for the NA62 Collaboration

APS Division of Particles & Fields (DPF) Meeting Northeastern University, 1 August 2019

Outline

NA62 Collaboration

~ 200 participants

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax (GMU), Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, TRIUMF, Turin, Vancouver (UBC)

NA62

The main aim is the measurement of $BR(K->\pi\nu\nu)$ with a precision better than 10%

K-> $\pi\nu\nu$ in the SM

Roberta Volpe

APS DPF 2019

K-> $\pi\nu\nu$ for new physics

Search for New Physics at the EW scale with sizable coupling to SM particles via

Roberta Volpe

APS DPF 2019

K-> $\pi\nu\nu$ for new physics

A62

Search for New Physics at the EW scale with sizable coupling to SM particles via indirect effects in loops

- Custodial Randall-Sundrum[JHEP 0903 (2009) 108]
- ► MSSM scenarios:

[JHEP 0608 (2006) 064] [Int.J.Mod.Phys A29 (2014) no.27, 1450162]

- Simplified Z, Z' models
 [JHEP 1511 (2015) 166]
- Littlest Higgs with T-parity
 [Eur.Phys.J. C76 (2016) 182]
- ▶ LFU violation models

[Eur.Phys.J. C77 (2017) no.9 618]

KOTO (KLEVER...)

6

Measurement strategy

NA62 apparatus

CHOD

background rejection:
$$K^+ \rightarrow \pi^+ \pi^0$$

Hermetic photon veto system (LAV,SAV,LKr)

Large Angle Veto (LAV)

12 stations (lead glass blocks)

Multiplicity rejection (LAV, SAV, LKr, CHOD, STRAW)

0 100 m 160 m LKr calorimeter **Photon detection Small Angle Veto (SAV)** $\mathbf{v} \epsilon(\pi^0) = 3 \ 10^{-8}$ Covering angles $1 < \theta < 8.5$ mrad **IRC:** Inner Ring Calorimeter Small Angle Calorimeter Covering angles <1 mrad

NA62 apparatus

Particle identification: To separate $\pi/\mu/e$

The RICH is used also to obtain

RICH

Ring Imaging Cherenkov detector

Neon 1 Atm $\pi/\mu/e$ separation

MUV Muon veto system

A 62

MUV1 & MUV2:

Hadronic calorimeters for the μ/π separation

MUV3: Efficient fast Muon Veto used in the hardware trigger level.

Multivariate analysis with MUV1, MUV2 and LKr info

2 algorithm for the RICH variables

 $\mathbf{v} \epsilon(\mu^+) = 10^{-8} \epsilon(\pi^+) = 64\%$

LKr calorimeter

Photon detection

NA62 in real life

Same analysis strategy:

⊠2016 run: published result

Phys. Lett. B 791 (2019) 156-166, arXiv.1811.08508

2017 run: *work in progress* Preliminary studies in SPSC NA62 status report:

http://cds.cern.ch/record/2668548

About 20% of *K*⁺ decay inside the fiducial volume <u>2 years running at high intensity we collected:</u>

• $O(10^{13})$ K⁺ decays in fiducial volume

Analysis strategy

ε(RV), Random Veto efficiency: signal efficiency due to accidental activity

12

Results from 2016 run

Phys. Lett. B 791 (2019) 156-166

Analysis of 2017 run

- **Higher intensity**
- ✓ ~10x more data
- ☑ Improved LKr reconstruction
- 40% better π^0 rejection (it does not depend on intensity)
- Slightly improved usage of RICH variables
- \checkmark No effect from intensity on π efficiency and μ rejection.

$$\epsilon_{\pi\nu\nu} \cdot \epsilon_{trigger} \cdot \epsilon_{RV} = 2.3 \%$$

N_K = (1.3 ± 0.1) 10¹²

expect 2.5 SM $K^+ \rightarrow \pi^+ \nu \nu$ events

$K^+ \rightarrow \mu^+ \nu$ background estimation http://cds.cern.ch/record/2668548

Background estimation status

APS DPF 2019

*NA*52

Roberta Volpe

M²_{miss} distribution

- Use the information from the distributions to
 - ▶ Increase the sensitivity for $\pi \nu \nu$
 - Search for a peak (sensitivity to several models in the hidden sector context:
 - dark scalar(Higgs-mixing)
 - axiflavon, ..
 - ▶ 4 bins in pion momentum
 - Unbinned analysis in missing mass

Further flavor physics program

- Standard Kaon Physics:
 - Measurements of the BR of all the main K⁺ decay modes:
 - $\chi \text{PT: } K^+ \rightarrow \pi^+ \gamma \gamma, \ K^+ \rightarrow \pi^+ \pi^0 e^+ e^-, \ K^+ \rightarrow \pi^0 (+) \pi^0 (-) l^+ \nu$
 - Lepton Universality: $R_K = \Gamma(K^+ \rightarrow e^+ v_e) / (K^+ \rightarrow \mu^+ v_\mu)$
- **Rare/forbidden** K⁺ and π^0 decays at SES ~10⁻¹²:
 - K^+ physics: $K^+ \rightarrow \pi^+ l^+ l^-$, $K^+ \rightarrow \pi^+ \gamma l^+ l^-$, $K^+ \rightarrow l^+ \nu \gamma$,
 - LFV/LNV searches: $K^+ \rightarrow \pi^+ \mu^\pm e^\mp$, $K^+ \rightarrow \pi^- \mu^+ e^+$, $K^+ \rightarrow \pi^- l^+ l^+$
 - π^0 physics: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^-$, $\pi^0 \rightarrow e^+ e^- e^+ e^-$, $\pi^0 \rightarrow \gamma \gamma \gamma (\gamma)$, ...

Published result:

A 45

Lepton number violation (LNV)

arXiv.1905.07770 Phys. Lett. B 797 (2019) 134794

Next slide

Roberta Volpe

Lepton number violation

 Subset of 2017 data, corresponding to 3 months of data taking (3 times more data still to be analyzed.)

- dedicated, downscaled triggers
- Normalization from corresponding SM channels

Improved previous PDG upper limits: $BR(K^+ \rightarrow \pi^- \mu^+ \mu^-) < 8.6 \times 10^{-11} @ 90 \% CL$

[NA48/2]

 $BR(K^+ \to \pi^- e^+ e^-) < 6.4 \times 10^{-10} @\,90 \,\% \,CL$ [BNL, E865]

Conclusions

Prague (2015) NA62 Collaboration Meeting

Roberta Volpe

APS DPF 2019

Roberta Volpe

APS DPF 2019

Random veto

Standalone RICH

Standalone RICH

RICH Radius from the fit

 Momentum measured by the tracking

> by the only **RICH** detector No possible bias from other detector

10 50 40 60 0 $M_{RICH} = \underbrace{P_{\pi} n_{in}} \sqrt{\cos^2 \left(\tan^{-1} \left(\frac{R_{ring}}{f_{length}} \right) \right)}$

Focal length ~17 m

2016 Background evaluation Phys. Lett. B 791 (2019) 156-166

Roberta Volpe

APS DPF 2019

MA62

The Axiflavon

28

Dark scalar, Higgs mixing

29