EXOTIC COMPACT OBJECTS IN A DISSIPATIVE DARK SECTOR

ArXiv:1812.07000
Collaboration with D. Egana-Ugrinovic, R. Essig and C. Kouvaris

Jae Hyeok Chang
C.N. Yang Institute for Theoretical Physics, Stony Brook

07/29/2019 DPF 2019
Q: Can we learn about the particle nature of DS if it interacts with SM sector only gravitationally?
A: Yes!

If it forms compact objects

- Called exotic compact objects (ECO)
- Can be found by high-precision observatories (GW or weak lensing)
- Properties of compact objects are determined by particle nature of DS
Goal: Using a simple DS model, find properties of the exotic compact objects according to model parameters
A SIMPLE DARK SECTOR MODEL FOR ECO FORMATION
Conditions for the Model

- **Self-Interaction**
 - Otherwise behaves like CDM
 - Sub-dominant (We assume 1% of total DM)

- **No annihilation**
 - For stable final objects
 - Ex) Asymmetry, Bound states, …

- **Cooling process**
 - Necessary for “fragmentation”
Baryons are too complicated!

- They form bound states, a lot of cooling processes…
- Hard to handle analytically
- As a starting point, we consider a DS model as simple as possible
The Simplified Model in this Work

- Contains only two particles
 - Dark electron e_D^-: Compose matter
 - Dark photon γ_D: Mediate interactions

- Has charge asymmetry
 - Negligible dark positron
 - Not simple in terms of model building, but simple to handle astrophysical phenomenon
Interactions in the Model

Self Interaction
Bremsstrahlung cooling

Satisfies all the conditions
Advantages of the Model

- There are no bound-states
- Only one cooling process
- Only three model parameters: m_{e_D}, m_{γ_D}, α_D
SCHEMATIC OF COMPACT OBJECT FORMATION
In early Universe, there are overdensities and underdensities—described by primordial power spectrum.
• Perturbation grows with time
• Can be analyzed with linear theory
• Enters non-linear regime at some point
Jeans Mass M_J

- Maximum mass of gas that pressure can support

- If $M > M_J$, a mass clump collapses

$$M_J = \frac{\pi}{6} c_s^3 \left(\frac{\pi}{G} \right)^{3/2} \left(\frac{1}{\rho} \right)^{1/2}$$

- c_s depends on particle nature
Schematic of Non-linear Regime

- A big mass perturbation from linear growth
- Suppose $M > M_J$
Adiabatic Collapse

- Temperature increases
- M_J increases
Adiabatic Collapse

- Adiabatic collapse stops at $M_J = M$
- The mass perturbation is virialized
Virialized Collapse

- If there’s cooling, it keeps collapsing.
- Cooling is slower than collapse, temperature increases.
Fragmentation

- Cooling becomes important as number density increases.
- Temperature and M_J decrease.
Compact Objects Formation

- Cooling stops as optical depth becomes large
- Fragmentation stops
QUANTITATIVE ANALYSIS
Master Equation

\[dE = -PdV - \Lambda dt \]

\[\frac{d \log T}{d \log \rho} = \frac{2}{3} \frac{mP}{\rho T} - 2 \frac{t_{\text{collapse}}}{t_{\text{cooling}}} \]

- Mass perturbation is parameterized with \(\rho \) and \(T \)

\(\Lambda \) is cooling rate
Evolution Trajectory \((M = 10^{10} M_\odot)\)

- \(m_{\epsilon_D} = 1\ \text{GeV}\)
- \(m_{\gamma_D} = 100\ \text{eV}\)
- \(\alpha_D = 10^{-1}\)

- To analysis of individual fragments
 - Last fragmentation
 - Fragmentation
 - \(t_{\text{cooling}} \sim t_{\text{ff}}\)
 - Nearly virialized contraction
 - \(\epsilon_D\) halo virialization
 - Adiabatic free-fall
 - \(\rho_{\epsilon_D} = \rho_{\text{CDM}}\)
 - Adiabatic free-fall
 - Hubble decoupling
 - To linear regime
Results According to Model Parameters

- Black lines: Minimum M_J in M_\odot after fragmentation
- Blue lines: Corresponding compactness ($C = GM/R$)
Conclusion

- We described the complete history of structure formation of a simple dissipative dark sector model.

- We provided a map between astronomical properties and particle physics parameters.
Conclusion

• A wide range of opportunities lies ahead,
 ◦ What is the behavior of more complicated dark sector models?
 ◦ What are the astronomical signatures of such models?
 ◦ Numerical simulations?

• Lots of progress to make from the theory side, even if DM interacts with us only gravitationally
THANK YOU