Shapes of Self-Interacting Dark Matter

Aditya Parikh
Harvard University

In collaboration with M. Reece and P. Agrawal
Motivations to Study SIDM

- **Observationally: small scale problems with cold dark matter**
 - Core vs. Cusp, Missing Satellites, Too Big to Fail, Diversity of Rotation Curves
 - Potentially resolved with baryonic feedback processes

- **Theoretically: is dark matter collisional or not?**
 - We have a very well posed problem with a clear prescription for how to solve it.
What is the goal?

- Compute the viscous cross section
 \[\sigma_V = \int d\Omega \sin^2 \theta \frac{d\sigma}{d\Omega} \]
- Include non-perturbative effects - Sommerfeld enhancement
- Have a recipe to do this for arbitrary interactions
 - Compute 2 → 2 scattering amplitude
 - Calculate a potential
 - Compute cross section summing over angular momentum modes
Viscous Cross Section

- The viscous cross section is defined as
 \[\sigma_V = \int d\Omega \sin^2 \theta \frac{d\sigma}{d\Omega} \]

- This cross section regulates forward and backward scattering poles
- Galaxy DM distributions aren’t affected by forward and backward scattering so this is a good proxy for what we observe!
Sommerfeld Enhancement

- A Classical Analogy

 \[
 \begin{align*}
 \text{w/o gravity} \quad \sigma_0 &= \pi R^2 \\
 \text{w/ gravity} \quad \sigma &= \pi b_{max}^2 = \sigma_0 \left(1 + \frac{v_{\text{esc}}^2}{v^2}\right)
 \end{align*}
 \]

- Non-perturbative effect that can be treated quantum mechanically
 - Match a field theory calculation onto a quantum mechanical potential
 - Solve the Schrödinger Equation

\[
S = \frac{\left|\Psi(0)\right|^2}{\left|\Psi^0(0)\right|^2}
\]

Arkani-Hamed, Finkbeiner, Slatyer, Weiner [0810.0713]
Coulomb Potential

- This potential admits an analytic solution for the Sommerfeld enhancement factor

\[
S = \left| \frac{\pi}{\epsilon_v} \frac{\epsilon_v}{1 - \exp[-\frac{\pi}{\epsilon_v}]} \right| \quad \epsilon_v \equiv \frac{v}{\alpha}
\]

- As \(v \) becomes large, \(S \) starts to approach 1.
- As \(v \) approaches 0, \(S \) behaves like \(1/v \) and starts to diverge.
- Important in the nonrelativistic limit!
EFT Approach

- Process we consider is DM scattering
- Classify all EFTs with a light mediator and fermionic dark matter
 - Study scalar, vector, pseudoscalar and axial vector interactions
 - Dirac and Majorana fermions and Symmetric vs. Asymmetric

<table>
<thead>
<tr>
<th>Type</th>
<th>Process</th>
<th>Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Majorana</td>
<td>$\chi\chi \rightarrow \chi\chi$</td>
<td>s, t, u</td>
</tr>
<tr>
<td>Dirac, Asymmetric</td>
<td>$\chi\chi \rightarrow \chi\chi$</td>
<td>t, u</td>
</tr>
<tr>
<td>Dirac, Symmetric</td>
<td>$\chi\bar{\chi} \rightarrow \chi\bar{\chi}$</td>
<td>s, t</td>
</tr>
</tbody>
</table>
Various Non-Relativistic Potentials

\[V_{\text{scalar}}(r) = -\frac{\lambda^2}{4\pi r} e^{-m_\phi r} \]

\[V_{\text{pseudoscalar}}(r) = \frac{\lambda^2}{4m_\chi^2 - m_\phi^2} \frac{\delta'(r)}{4\pi r} \left(2S_1 \cdot S_2 - \frac{1}{2} \right) + \frac{\lambda^2}{4\pi} \frac{e^{-m_\phi r}}{m_\chi^2} \left[\frac{m_\phi^2}{3r} S_1 \cdot S_2 + \frac{3(S_1 \cdot \hat{r})(S_2 \cdot \hat{r}) - S_1 \cdot S_2}{r^3} \left(1 + m_\phi r + \frac{m_\phi^2 r^2}{3} \right) \right] \]

\[+ \frac{\lambda^2}{12\pi m_\chi^2} \frac{e^{-m_\phi r} \delta'(r)}{r} S_1 \cdot S_2 \]

\[V_{\text{vector}}(r) = -\frac{\lambda^2}{4m_\chi^2 - m_A^2} \frac{\delta'(r)}{2\pi r} \left(\frac{3}{2} + 4S_1 \cdot S_2 \right) - \frac{\lambda^2}{4\pi r} e^{-m_A r} \]

\[V_{\text{axial vector}}(r) = \frac{\lambda^2}{4m_\chi^2 - m_A^2} \frac{\delta'(r)}{2\pi r} \left(\frac{1}{2} - 2S_1 \cdot S_2 \right) - \frac{\lambda^2}{\pi r} e^{-m_A r} S_1 \cdot S_2 + \frac{4m_\chi^2}{m_A^2} V_{\text{pseudoscalar}} \]
Computing σ_V

- Use the Lippmann-Schwinger Equations to set the initial conditions
- Solve the Schrodinger Equation
- Match onto the asymptotic form
- **Extract the phase shift (S-matrix)**
- Compute the viscous cross section

\[
\sigma_V = \sum_{l=0}^{\infty} \frac{(l+1)(l+2)}{(2l+3)} \sin^2(\delta_{l+2} - \delta_l)
\]
Pseudoscalar Potential
Parameter Choices
\(m_\chi = 1 \text{ GeV} \)
\(m_\phi = 10^{-3} \text{ GeV} \)
\(\lambda = 10^{-1} \)

Blue - Numerical Cross Section
Orange - Born Cross Section
Conclusions

- Understanding the space of theories of SIDM is an interesting theoretical problem to solve
- Sommerfeld enhancement can significantly increase the cross section in the non-relativistic regime
- The viscous cross section is the relevant quantity of interest and we have a well-defined procedure for computing it
Thank You!
Backup
The Universal Energy Budget

- What makes up our universe?
 - Radiation
 - Ordinary Matter
 - Dark Matter (CDM)
 - Cosmological Constant (Λ)
- ΛCDM is successful on the largest scales

Mitsou [1310.1072]
CDM Signatures & Evidences

- Rotation Curves
- Gravitational Lensing - Bullet Cluster
- Cosmic Microwave Background
Small Scale Problems with CDM

● Core vs. Cusp Problem
 ○ Simulations show cuspy profiles whereas rotation curve observations show cored profiles

● Missing Satellites Problem
 ○ CDM simulations show an overprediction of subhalos and associated dwarf galaxies as compared to observations

● Too Big to Fail Problem
 ○ Most luminous galaxies predicted to inhabit the most massive subhalos.
 ○ Massive subhalos are expected to form stars and should host observable galaxies.
 ○ Low mass galaxies have observed velocities too small to be consistent with the mass of the subhalos they are expected to inhabit.

● Diversity Problem
Baryonic Feedback vs. Self-Interacting Dark Matter

- Supernova driven outflows can help:
 - Flatten the dark matter cusp into a core
 - Deplete baryons and render low mass halos incapable of forming satellites
- SIDM is an interesting alternative
 - Alleviate core vs cusp problem and too big to fail problem by scattering
 - Can give rather interesting signals in experiments depending on how it interacts with the Standard Model
 - Theoretically well motivated question to ask whether dark matter is collisional or not, even if it is just within the dark sector
Red: Dwarf galaxy data
Blue: Low Surface Brightness galaxy data
Green: Cluster data
Gray: SIDM N-body simulation halos

Best fit dark photon model curve shown

Kaplinghat, Tulin, Yu [1508.03339]
Hulthen Potential

\[V(r) = -\frac{\alpha m_* e^{-m_* r}}{1 - e^{-m_* r}}. \]

Blum, Sato, Slatyer [1603.01383]
How do we renormalize?

- Introduce a UV cutoff
 - Removes high momentum states
 - Softens the short range behavior
- Add local counterterms
 - Systematically removes cutoff dependence
 - Derivative expansion
- Make sure we have the correct long range behavior
Coulomb Potential Example

- **Step 1: Introduce the UV cutoff**
 \[
 \frac{1}{r} \rightarrow \frac{4\pi}{q^2} \rightarrow \frac{4\pi}{q^2} e^{-a^2 q^2 / 2} \rightarrow \frac{erf(r / \sqrt{2a})}{r}
 \]

- **Step 2: Add a local counterterm**
 \[
 V_{\text{eff}} = -\frac{\alpha}{r} erf(r / \sqrt{2a}) + 2\pi \alpha c a^2 \delta_a^3(r)
 \]

- **Step 3: Perturbative matching**
 \[
 - \frac{4\pi \alpha}{q^2} e^{-a^2 q^2 / 2}(1 + c a^2 q^2 / 2) = - \frac{4\pi \alpha}{q^2} (1 + (c - 1) a^2 q^2 / 2 + \mathcal{O}(a^4 q^4))
 \]