Constraining Temporal Oscillations of Cosmological Parameters Using SNe Ia

Sasha R. Brownsberger1, Christopher W. Stubbs1,2, and Daniel M. Scolnic3

1Department of Physics Harvard University, Cambridge, MA 02138, USA
2Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
3Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, IL 60637, USA
Presentation Outline

• Background:
 • Type Ia Supernovae (SNe Ia) and dark energy.
 • The Pantheon set of SNe Ia.

• Searching for oscillatory deviations from ΛCDM in Fourier Space – why and how?

• Results A: Is the Fourier structure of the Pantheon SNe Ia consistent with ΛCDM? – Yes.

• Results B: Constraining Alternate Cosmological Models:
 • General methodology.
 • Example.

• Conclusion and future analyses.
Background-type Ia supernovae and DE

- Type Ia supernovae (SNe Ia):
 - Normalizable, luminous standard candles.
 - Distance modulus, μ, and redshift, z, describe expansion between occurrence and detection.

\[\mu(z) = 25 + 5 \log_{10} \left(\frac{d_L}{1\text{Mpc}} \right) = 25 + 5 \log_{10} \left(\frac{c(1 + z)}{1\text{Mpc}} \int_0^z dz' \frac{1}{H(z')} \right) \]
Background-supernovae and DE

• Type Ia supernovae (SNe Ia):
 • Normalizable, luminous Standard candles.
 • Distance modulus, μ, and redshift, z, describe expansion between occurrence and detection.

• Dark energy:
 • Measurements of SNe Ia determined that the expansion of the universe is accelerating.
 • The source – dark energy (DE).

Perlmutter 1999.
Background-supernovae and DE

• Type Ia supernovae (SNe Ia):
 • Normalizable, luminous Standard candles.
 • Distance modulus, μ, and redshift, z, describe expansion between occurrence and detection.

• Dark energy:
 • Measurements of SNe Ia determined that the expansion of the universe is accelerating.
 • The source – dark energy (DE).

• The Canonical Cosmological Model: ΛCDM
 • Cosmologically constant DE, Λ.
 • Cold dark matter, CDM.

Wollack 2014.
Background-the Pantheon set of SNe Ia

• Consists of 1048 supernovae
• How can this data best be utilized?

The data of Scolnic 2018.
Background-the Pantheon set of SNe Ia

• Consists of 1048 supernovae.
• How can this data best be utilized?
• Some DE theories predict short-lived or oscillatory deviations in expansion.
• With the right statistical technique, could we better constrain these models with the Pantheon data?

The data of Scolnic 2018.
Fourier Transforming SNe Ia Data
Fourier Transforming SNe Ia Data - Why?

• Natural method for detecting oscillatory behaviors in cosmological parameters.
• Well-defined basis for decomposing any model.
Fourier Transforming SNe Ia Data - How?

- Analyze distance modulus residuals.
- Cosmic oscillations in time would be observed as oscillations in conformal time.
- The frequency range is bounded from below by the conformal time period.
- From above by the light crossing time of a galaxy cluster.
- A periodogram contains the Fourier structure of a data set that is discretely sampled in time.
Fourier Transforming SNe Ia Data - How?

• Analyze distance modulus residuals, $\Delta \mu$.

$\Delta \mu_l = \mu_l - \mu_{\Lambda CDM}$
Fourier Transforming SNe Ia Data - How?

• Analyze distance modulus residuals, $\Delta \mu$.

• Cosmic oscillations would be observed as oscillations in conformal time, τh_{100}.

$$\Delta \mu_i = \mu_i - \mu_{\Lambda CDM}$$

$$\tau h_{100} = \int_0^z dz' \frac{1}{H(z')/H_0 \text{100kms}^{-1}\text{Mpc}^{-1}} \frac{1}{100\text{kms}^{-1}\text{Mpc}^{-1}}$$

$$h_{100} = \frac{H_0}{100\text{kms}^{-1}\text{Mpc}^{-1}}$$
Fourier Transforming SNe Ia Data - How?

- Analyze distance modulus residuals, $\Delta \mu$.
- Cosmic oscillations would be observed as oscillations in conformal time, τh_{100}.
- The frequency range is bounded…
 - from below by the conformal time period.
 - from above by the light crossing time of a typical galaxy cluster.

$$\tau h_{100} = \int_0^z dz' \frac{1}{H(z')/H_0} \frac{1}{100 \text{kms}^{-1}\text{Mpc}^{-1}}$$

$$h_{100} = \frac{H_0}{100 \text{kms}^{-1}\text{Mpc}^{-1}}$$

$$f_{\text{min}} = \frac{h_{100}}{h_{100}(\tau_{\text{max}} - \tau_{\text{min}})} \approx 0.08 \text{Gyr}^{-1} h_{100}$$

$$f_{\text{max}} = 1000 f_{\text{min}}$$
Fourier Transforming SNe Ia Data - How?

• Analyze distance modulus residuals, $\Delta \mu$.

• Cosmic oscillations would be observed as oscillations in conformal time, τh_{100}.

• The frequency range is bounded…
 • from below by the conformal time period.
 • from above by the light crossing time of a typical galaxy cluster.

• A periodogram component, Q_n, estimates the Fourier power at frequency f_n of a discretely sampled data set.

$$\Delta \mu_i = \mu_i - \mu_{\Lambda CDM}$$

$$\tau h_{100} = \int_0^z dz' \frac{1}{H(z')/H_0} \frac{1}{100 \text{km s}^{-1} \text{Mpc}^{-1}}$$

$$h_{100} = \frac{H_0}{100 \text{km s}^{-1} \text{Mpc}^{-1}}$$

$$f_{\text{min}} = \frac{h_{100}}{h_{100}(\tau_{\text{max}} - \tau_{\text{min}})} \approx 0.08 \text{Gyr}^{-1} h_{100}$$

$$f_{\text{max}} = 1000 f_{\text{min}}$$

$$Q_n = \frac{1}{B} \left| \sum_{j=1}^{N_{\text{SN}}} \Delta \mu_j e^{-2\pi i f_n \tau_j} \right|^2$$
Fourier Transforming SNe Ia Data - How?

- Analyze distance modulus residuals, $\Delta \mu$.
- Cosmic oscillations would be observed as oscillations in conformal time, τh_{100}.
- The frequency range is bounded…
 - from below by the conformal time period.
 - from above by the light crossing time of a typical galaxy cluster.
- A periodogram component, Q_n, estimates the Fourier power at frequency f_n of a discretely sampled data set.
Fourier Transforming SNe Ia Data - Statistics

In a ΛCDM cosmology, what is the likelihood that at least one periodogram component would be more excursive than the most excursive component of the observed periodogram?

Method:

(a) Simulate 10 g sets of SNe observations with Pantheon conformal times in a ΛCDM universe.

(b) Compute periodogram for this bootstrapped data.

(c) Determine probability distributions for each periodogram component, Q.

(d) Account for the "look elsewhere" effect by normalizing by the number of periodogram peaks.
Fourier Transforming SNe Ia Data - Statistics

Question: In a ΛCDM cosmology, what is the likelihood that at least one periodogram component would be more excursive than the most excursive component of the observed periodogram?
Fourier Transforming SNe Ia Data - Statistics

Question: In a ΛCDM cosmology, what is the likelihood that at least one periodogram component would be more excursive than the most excursive component of the observed periodogram?

Method:

(a) Simulate 1000 sets of SNe observations in a ΛCDM universe with Pantheon conformal times and distance modulus residual scatter.

(b) Compute periodogram for this bootstrapped data.

(c) Determine probability distributions for each periodogram component, Q_n.

(d) Account for the “look-elsewhere” effect by normalizing by the number of periodogram peaks.
Results A- Consistency of Pantheon Data with \(\Lambda \)CDM

Results:

A roughly 28% chance that at least one component of a \(\Lambda \)CDM periodogram would be more excursive than this most excursive observed peak.

Conclusion:

The Fourier spectrum of the Pantheon data set is consistent with \(\Lambda \)CDM.
Results B- Constraining a Cosmological Model
Results B- Constraining a Cosmological Model

• Choose alternate cosmological model:
 • Ex: Oscillating DE energy density.

\[\rho_{DE} = \rho_{DE,can} (1 + A_{\rho} \sin(2\pi f_{\rho} \tau + \phi_{\rho})) \]
Results B- Constraining a Cosmological Model

- Choose alternate cosmological model:
 - Ex: Oscillating DE energy density.

\[\rho_{DE} = \rho_{DE,can}(1 + A_\rho \sin(2\pi f_\rho \tau + \varphi_\rho)) \]

- Compute the distance modulus residuals.

- Select rejection probability ratio, \(R_{uv} \).

- Compute the periodogram.
 - Ex: \(A_\rho = 0.15 \)
 \(\varphi_\rho = 0 \)
 \(f_\rho = 10 f_{\text{min}} \)

- Reject periodograms with components that are \(R_{uv} \) times more extreme than the most extreme Pantheon component.
Results B- Constraining a Cosmological Model

• Choose alternate cosmological model:
 • Ex: Oscillating DE energy density.

\[
\rho_{DE} = \rho_{DE, can}(1 + A_{\rho} \sin(2\pi f_{\rho} \tau + \varphi_{\rho}))
\]

• Compute the distance modulus residuals.
• Select rejection probability ratio, \(R_{rej} \).

Example:

\(R_{rej} = 0.01 \)

“We reject those cosmologies with at least one periodogram component that is more than 100 times more excursive than the most excursive periodogram component of the Pantheon data set.”
Results B-Constraining a Cosmological Model

• Choose alternate cosmological model:
 • Ex: Oscillating DE energy density.
 \[\rho_{DE} = \rho_{DE,can}(1 + A_\rho \sin(2\pi f_\rho \tau + \phi_\rho)) \]
• Compute the distance modulus residuals.
• Select rejection probability ratio, \(R_{rej} \).
• Compute the periodogram.
 • Ex: \(A_\rho = 0.15, \varphi_\rho = 0, f_\rho = 10f_{\text{min}} \)
• Reject periodograms with components that are \(R_{rej} \) times more extreme than the most extreme Pantheon component.
Results B- Constraining a Cosmological Model

- Choose alternate cosmological model:
 - Ex: Oscillating DE energy density.
 \[
 \rho_{DE} = \rho_{DE,can}(1 + A_\rho \sin(2\pi f_\rho \tau + \varphi_\rho))
 \]
- Compute the distance modulus residuals.
- Select rejection probability ratio, \(R_{rej} \).
- Compute the periodogram.
 - Ex: \(A_\rho = 0.15, \varphi_\rho = 0, f_\rho = 10f_{\text{min}} \)
- Reject periodograms with components that are \(R_{rej} \) times more extreme than the most extreme Pantheon component.
Conclusion and Future Work

• The Fourier structure of the Pantheon data set is consistent with ΛCDM.
• Fourier analysis provides stronger constraints on certain alternate cosmological models than standard χ^2 analysis.
• Strongly rule out any model with a Fourier amplitude of >35 mmags.
• Results detailed in Brownsberger 2019.
Conclusion and Future Work

• The Fourier structure of the Pantheon data set is consistent with ΛCDM.
• Fourier analysis provides stronger constraints on certain alternate cosmological models than standard χ^2 analysis.
• Strongly rule out any model with a Fourier amplitude of > 35mmags.
• Results detailed in Brownsberger 2019.
• With one year of LSST data (Carroll 2014), these constraints will fall to ~ 2mmags.
• Future analyses could also study 3-dimensional structure of SNe Ia signals.
Full Constraints Placed on Alternate Cosmological Model Periodograms
A universe with variable DE energy density

- Dark energy density that scales in time by a scaling $X(\tau)$:
 \[\rho_{DE} \rightarrow X(\tau) \rho_{DE} \]
- Evolve differential equations forward in z

\[\frac{d\tau'}{dz} = \frac{1}{H'} \quad \tau'(z = 0) = 0 , \]
\[\frac{d d_L'}{dz} = \frac{d_L'}{1 + z} + \frac{1 + z}{H'} \quad d_L'(z = 0) = 0 , \]

\[H' \equiv \frac{H}{H_0} = \sqrt{(1 + z)^3 \Omega_{m,0} G' + (1 + z)^4 \Omega_{r,0} G' + X(\tau, z) \Omega_{\Lambda}} , \]
\[\tau' \equiv \tau H_0 = \tau h_{100} 100 \text{ km s}^{-1} \text{ Mpc}^{-1} , \]
\[d_L' \equiv d_L H_0 / c . \]
Fitting the Periodogram Components

- If the distance modulus residuals, \(\Delta \mu \), were evenly spaced in \(\tau \), drawn from a function with no \(\tau \) dependence, and had Gaussian uncertainties, then

\[
\left. r_n(Q) \right|_{\mu(\tau)=0}, \text{Gaussian uncertainties, & evenly spaced } \tau = 1 - e^{-Q/c_Q},
\]

- We generalize this with the lower incomplete gamma function:

\[
r_n(Q) = \frac{\gamma\left(1/b_n, (Q/a_n)^{b_n}\right)}{\gamma\left(1/b_n, \infty\right)}
\]

- We determine the limiting periodogram values by numerically solving

\[
r_n(Q_{\text{max},n}) = (1 - P_{\text{rej}})^{1/N_{\text{peak}}}
\]
More on Our Model Constraining Analysis

- Ideally, we would use bootstrap analysis to recompute the distribution of periodogram values for each considered non-standard cosmology
 - Not computationally feasible for a range of parameter values
- We look at the deviation of the alternate cosmology from ΛCDM relative to the deviation of the Pantheon data from ΛCDM.

\[R_{r\chi^2_\nu} = \frac{\int_{r\chi^2_{\nu,\Lambda CDM}}^\infty d(\chi^2)p_\nu(\chi^2)}{\int_{r\chi^2_{\nu,\Lambda CDM}}^\infty d(\chi^2)p_\nu(\chi^2)} \]

\[R_{\text{Fourier}} = \frac{1 - (\max(r_n(Qn,\Lambda CDM)))^{N_{\text{peak}}}}{1 - (\max(r_m(Qm,\text{Pantheon})))^{N_{\text{peak}}}} \]

- The idea: a large deviation from ΛCDM would have been detected in our analysis. No such deviation was detected, and so theories that predict such deviation can be ruled out.