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Motivation: Muon g-2 and
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Motivation: Muon g-2 and BSM Physics

Improve the error bar

Reducing the experimental error bar
* More statistics: 21 times more data

* Better control on systematic uncertainties y Y
Reducing the theoretical error bar
* Reduce the hadronic vacuum polarization (HVP)
calculations by analyzing more e+e- data u Y
Y n

* Improve Hadronic light-by-light calculation by ;
lattice QCD LO hadronic hadronic LbL

* Cross-check HVP calculations using lattice QCD

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
v 7/30/2019



How to measure the muon g-2 value?

Momentum Momentum
=

| precession;

o
u spin !

/ . Bield

Muon precession in
a magnetic field
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Experiment overview

Challenge:

Measuring w, and B with
systematic uncertainties down to
70 ppb each

mw
eB

T ks | eses

w, 180 ppb 70 ppb

A (EXp) ==

B 170 ppb 70 ppb

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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Magnet construction

Super conducting coils

innercoil -

top hat

o= thermal
~ insulation

ﬁ»\ outer

> fixed NMR probes

|/ outer

iger co“ _ top hat
Iron yoke . i
y Uniform field in the gap
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Magnetic field measurement device: NMR Probe

= Measure magnetic field using
proton Nuclear Magnetic
Resonance (NMR)

= Measure NMR frequency Wp

= Introducing new parameters A,
Hp
=  Rewrite a,

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
7/30/2019



NMR Probes Construction

NMR Probe for field scan and monitor

Serial inductor coil

Base piece with double crimp connection

End cap with threaded hole

100.00 mm

Outer crimp ring

8.00 mm
rr—u-l
—

Petroleum jelly volume
Inner conductor of capacitor

Double shielded cable

Inner crimp ring

Parallel inductor coil

PTFE tuning piece with slot

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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Magnetic Field Measurement Overview

= Spatial distribution: field scan
= Field drift over time: field monitor
= Achieve the proposed accuracy: calibration

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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In-Vacuum Field Scanner

Trolley in the beam storage region
Field Scanner (Trolley)

Electronics Probe holder

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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In-Vacuum Field Scanner

“Garage” for trolley storage during the beam run

-

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory

Field Scanner (Trolley)

Electronics

Probe holder

7/30/2019
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In-Vacuum Field Scanner

Features

Low magnetic foot-print electronics

Fully digitized FID waveforms are
stored

On-board waveform digitization, low
noise pick-up
Low bit-error rate and phase noise

Motions are fully automated and
remotely controlled

Position determination with high
repeatability

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory

Field Scanner (Trolley)

7/30/2019
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In-Vacuum Field Scanner: Motion Control

Position Tension
Motors
Encoders sensors
Trolley T l l
Drive ;
Galil system

TEthernet cable
s| Front-end

computer

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory

7/30/2019 15



In-Vacuum Field Scanner: Position Determination

Barcode printed on the floor Barcode scanner

DIR POS SEfscrs
AINEaRnnnnnnnnnnnannnnnnngnnenit
E i il i

ABS

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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In-Vacuum Field Scanner: Position Determination

Position
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In-Vacuum Field Scanner: Position Determination
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Reasons for barcode

Because of the cable stretch,
position derived from motor
encoders is not accurate ( +/-2 cm)

Need high repeatability between
different scans for field tracking
study, particularly at high-gradient
region

7/30/2019 18



In-Vacuum Field Scanner: Example Field Map
(5/16/2018)
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Field Monitor

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory

378 Fixed probes

Outside the vacuum chamber

7/30/2019
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Field Monitor

378 Fixed probes

e Qutside the vacuum chamber

* Around the muon storage region

e Offline analysis: interpolate field in
between the scans

thermal

wedge EE——

pole plece
edge

shum
muon
reglon

( ;surface
col ctnonconl

inner coil

g-2 Magnet in Cross Section

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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Field Monitor

378 Fixed probes

* Qutside the vacuum chamber

e Around the muon storage region

e Offline analysis: interpolate field in
between the scans

Features

* Fast online analysis with better
algorithm (accelerated by GPU)

* Fast repetition rate (1.6s, ~10
times faster than E821)

* Power-supply feedback system to
stabilize the field azimuthal
average

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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Probe Calibration

Why calibration is needed?

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory

w

Probe and its materials perturb .
the field | | Mo :
Protons are inside molecules
A7
meas — 11 — g (HyO,T) — (& — —

A

Protons in H2O molecules,
diamagnetism of electrons screens
protons => local B changes

« 0=25680(2.5 x10%at 25 deg C
[Y. Neronov and N. Seregin,
Metrologia 51, 54 (2014)]

w 4B

’?‘ é \ l.,‘cll“3\'¢
Yy -/- :

.

3

x(H20,T) = §,, | wiree

p

, )

p
Magnetic susceptibility of water gives shape-
dependent perturbation

* £ = 41/3 (perfect sphere)

* & = 2m (infinite cylinder) when probe is
perpendicular to B

* XHpo0=-720(3) x 10-9[B. H. Blott and G. J.

Daniell, Meas. Sci. Technol. 4, 462 (1993)]

Magnetization of probe
materials perturbs the field
at site of protons

J

7/30/2019
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Probe Calibration

macor support aluminum shield
electronics RF coil support

macor support

RF coil

water sample

A

254 mm

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory

Plunging probe

* Well-defined geometry

* Low-perturbation material

* Vacuum compatible

* Motorized positioning system

Calibration

* Use the trolley probe and the
plunging probe to measure the
field at the same position

e Shim the field at the calibration
position

* Account for misalignment and
field drift

7/30/2019
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Data analysis

Calibration ™
N Field Maps at Field Fixed Probe
Scans Monitor

Field Scan =

Interpolation

\ 4
Field Maps During .
—>

Beam Time Averaging

g-0 5(.) IO(I) I510 260 ZSlO 30I0 35(.) &5;9
Phi [deg]

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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Difference [Hz]

Data Analysis: Field Multipole Tracking
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Difference between two field
scans

Blue Line: Dipole field (cross-
sectional average) measured
by the trolley

Red/Green Dots: Fixed probe
measurements

7/30/2019
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Data Analysis: Averaging

B-field (ppm)

Vertical Position [mm]
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Data Analysis Progress

Data production and quality control are stream-lined
Analysis in advanced stages:

— FID frequency extraction

— Calibration
On-going efforts

— Field interpolation

— Averaging over the muon distribution

— Motion effect in the field mapping

— Beam-related transient field

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory

7/30/2019

28



Projected improvement on the field measurement

T T _______ Methoss |

Absolute probe calibration

Trolley probe calibration 90
Trolley measurement 50
Fixed probe interpolation 70
Muon distribution 30

Time dependent external -
magnetic field

Others* 100

total 170

30

30

30
10

30

70

More uniform field for calibration

Better alignment between trolley and the
plunging probe

More uniform field, less position uncertainty

More stable temperature

More uniform field, better understanding of
muon distribution

Direct measurement of external field, active
feedback

More uniform field, trolley temperature
monitor, etc

* Higher multipoles, trolley temperature and power supply, kicker eddy currents, etc.

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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Run-1 Summary

The high-precision magnetic field measurement system for the Muon g-2
experiment (E989) is commissioned.

— Field scanning trolley

— Fixed probes for field tracking

— Calibration probe
Operation in Run-1 (2018) was successful

— ~30 Field Scans

— 100% uptime when the magnet is On

— Data quality: >95%
Data analysis framework is developed. Field interpolation between scans and
averaging over the muon distribution are the main on-going studies.

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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Run-2 Upgrades

More systematic study runs

— Stationary trolley runs: studying the relationship between the trolley and nearby fixed
probes

— Stepper trolley runs: motion effects, resolution
— More frequent field scans: studying the interpolation

Better field scan scheduling
— Covering different times of a day (different temperatures)

Synchronize fixed probe trigger with the muon beam
— Study the beam-related transient field

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory

7/30/2019
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Passive Magnhet Shimming
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Active Magnet Shimming

200 Concentric surface current coils to
cancel the transverse non-uniformity

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory

Before
active shimming

After
active shimming

Final Rough Shimming Field (ppm)
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NMR Slgnal AnalyS]S * Symmetric distribution

Realistic case: probe in non-uniform field g(Aw): ¢p(t) =0, wy is
average frequency @

Asymmetric distribution,

d
6:0)0+d_f

t=0
Linear phase fit residual

+00
f(t) = Ae‘t/fzeintJ g(Aw)e**tdAw

Inverse Fourier Transform of g(Aw)!

G(t) = f +oog(Aa))eiAwtdAw =C(t) +iS(t)

Pl |rza)
f=1
e
T

=\/C2(t) _I_Sz(t)eitan—l S(t)/C(t) .} I

f(£) = Ae=t/72\[C2(2) + SZ(E)ei@ot+(®) Al

I 250 ppb correction
¢(t) =tan~'S(t)/C(t)

0N e - - -
APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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Data Analysis: Calibration

Calibration Runs

Trolley, PP swapping

*  Shimmed field
C' =
PP AB Runs
PP AB measurements in all 3 A, —
directions T =
Bjdu: =

Shimmed Field Scan Runs

* PP scan locally around the calibration position
* @ direction scan: using PP or the trolley

BPP - BT + Z Bg.i A;BI-_)
i=R.Y,®
ABppi{ABr;| . Trolley AB Runs
PPB; i =R,Y,® * Trolley AB measurements in
Ai .
. all 3 directions
0B 4
3;1:.;_

Trolley AB Runs and Azimuthal Scan Runs
* Applied transvers gradients (R,Y): Trolley AB Runs
* Applied longitudinal gradients (®): Trolley
azimuthal scans with azimuthal coils on/off

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory

7/30/2019
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Field Monitor and Stabilization

F“

-

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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Frequency [Hz]

Field Monitor and Stabilization
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Data Analysis: Averaging

Multipole Expansion

B-field (ppm)

APS DPF 2019, Boston, Ran Hong, Argonne National Laboratory
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