Phenomenology of TeV-scale scalar Leptoquarks in the EFT

Jonathan Cohen Technion, Israel

jcohen@campus.technion.ac.il

Based on: arxiv: 1812.03178, JC, Shaouly Bar-Shalom (Technion), Amarjit Soni (BNL) & Jose Wudka (UC Riverside)

Outline

- ·Brief introduction & motivation
- · A LQ-SMEFT framework: Effective Field Theory for TeV-scale LQ's
 - Low-energy lepton number violating (LNV) effect in the LQ-SMEFT
 - Neutrino masses
 - New LQ's Collider phenomenology (LNV) in the LQ-SMEFT
 - expectations & "SMOKING GUN" signals @ the LHC13 & beyond

·Summary and final notes

The LQ paradigm – some basic facts for LHC pheno

• LQ's are colored fields \Rightarrow should be copiously (QCD) pair produced @LHC if $M_{LQ} \sim O(1 \text{ TeV})$

Typical CSX is: $\sigma(pp \rightarrow \phi\phi^*) \sim \underline{5(0.01)}$ [fb] for $\underline{M_{\phi}} \sim \underline{1(2)}$ TeV

The LQ paradigm – some basic facts for LHC pheno

• LQ's are colored fields \Rightarrow should be copiously (QCD) pair produced @LHC if $M_{LQ} \sim O(1 \text{ TeV})$

• Typical CSX is: $\sigma(pp \rightarrow \phi\phi^*) \sim 5(0.01)$ [fb] for $M_{\phi} \sim 1(2)$ TeV

Single LQ production via quark-gluon fusion $qg \to \phi I$ may also be important if Yukawa-like LQ-quark-lepton couplings are sizable

-e.g., if the LQ is a "1st generation scalar LQ";

these channels are however model dependent!

The LQ paradigm – some basic facts for LHC pheno

· LQ's decay via:
$$\phi \to q_i e_j$$
 , $q_i v_j$ $\left[\Gamma \sim (y_{\phi ql})^2 \ M_\phi/16\pi\right]$

- · LQ categorized according to their couplings to a lepton-quark pair: 1st,2nd or 3rd gen. LQs ...
- → rich and possibly surprising LQ's collider phenomenology:

No LQ signal yet; typical bounds are M_{ϕ} > 1 TeV, depending on the underlying $\phi \rightarrow$ quark+lepton decay pattern and/or on the LQ generation (typically lower bounds for 3rd gen LQ ...)

Scalar LQ's $\phi(3,1,-1/3)$ or $\phi(3,1,2/3)$

Some good reasons for a TeV-scale scalar LQ

light scalar LQ's + SM Higgs scenarios:

- φ(3,1,-1/3) + Higgs residing in the same representation; 10 dim multiplet in an SO(10) GUT framework

 Aydemir, Mandel, Mitra, arxiv:1902.08108
- scalar LQ's + Higgs are PNGB's of a composite GUT model

e.g., Gripaios, Nardecchia, Renner, JHEP 2015, arxiv:1412.1791 Marzocca, JHEP 2018, arxiv:1803.10972 Da Rold, Lamagna, JHEP 2019, arxiv:1812.08678

TeV-scale $\phi(3,1,-1/3)$ to address/explain B-anomalies ($R_{D^{(1)}}$, $R_{K^{(2)}}$)

e.g.,
Sakaki, Tanaka, Tayduganov, Watanabe, PRD 2013, arxiv:1309.0301
Hiller, Schmaltz, PRD 2014, arxiv:1408.1627
Freytsis, Ligeti, Ruderman, PRD 2015, arxiv:1506.08896
Alonso, Grinstein, Martin, Camalich, JHEP 2015, arxiv:1505.05164
Bauer, Neubert, PRL 2016, arxiv:1511.01900
Mandal, Mitra, Raz, PRD 2019, arxiv:1811.03561

The renormalizable \$5M framework:

consider the SU(2) scalar singlets LQ: "down type":
$$\phi(3,1,-1/3)$$
 "up-type": $\phi(3,1,2/3)$

- Yukawa-like interactions (with Baryon # conservation):

$$\underline{\phi(3,1,-1/3)}$$
 $\underline{\phi(3,1,2/3)}$ $\mathcal{L}_{Y,\phi} = y_{a\ell}^L \bar{q}^c i \tau_2 \ell \phi^* + y_{ue}^R \bar{u}^c e \phi^*$ none!

- Scalar interactions:

$$\mathcal{L}_{H,\phi} = |D_{\mu}\phi|^2 - M_{\phi}^2 |\phi|^2 + \lambda_{\phi} |\phi|^4 + \lambda_{\phi H} |\phi|^2 |H|^2$$

 \Rightarrow the ϕ SM model:

$$\mathcal{L}_{\phi SM} = \mathcal{L}_{SM} + \mathcal{L}_{Y,\phi} + \mathcal{L}_{H,\phi}$$

Hybrid EFT's are (quite) common

· Axion models

Jaeckel, Jankowiak, Spannowsky Phys Dark Univ. 2013 arxiv:1212.3620

Bauer, Heiles, Neubert, Thamm Eur. Phys. J. 2019 arxiv:1808.10323

Fermionic DM

Busoni, De Simone, Gramling, Morgante, Riotto JCAP 2014, arxiv:1402.1275

Fedderke, Chen, Kolb, Wang JHEP 2014, arxiv:1404.2283

RH neutrinos

del Aguila, Bar-Shalom, Soni, Wudka Phys. Lett. 2009, arxiv:0806.0876

It is possible that new

un-explored LQ phenomenology @ TeV-scale energies may be "hiding" in the tails of the UV physics

Effective Field Theory for "light" LQ's may be important

Assume a light LQ to be one of the low-energy dof and construct the "LQ-SMEFT"

The LQ-SMEFT framework for the SU(2)-singlet scalar LQ's $\phi(3,1,-1/3)$ or $\phi(3,1,2/3)$

$$\mathcal{L} = \mathcal{L}_{\phi SM} + \sum_{n=5}^{\infty} \frac{1}{\Lambda^{n-4}} \sum_{i} f_i O_i^{(n)}$$

The higher dim. (n>4) effective opts $O_i^{(n)}$ are constructed out of the SM + "light" LQ field

Assume:

low-energy d.o.f.

 a single TeV-scale "light" LQ

 $\phi(3,1,-1/3)$ or $\phi(3,1,2/3)$

The LQ-SMEFT - physical picture

The LQ-SMEFT – the case of $\phi(3,1,-1/3)$

• dim. 5: only 2 tree-level generated dim. 5 opts involving φ(3,1,-1/3):

both violate lepton number by 2 units ...

$$\Delta \mathcal{L}_{\phi SM}^{(5)} = \frac{f_{\ell d\phi H}}{\Lambda_{\ell d\phi H}} \bar{\ell} d\tilde{H} \phi^* + \frac{f_{d^2 \phi^2}}{\Lambda_{d^2 \phi^2}} \bar{d} d^c \phi^2 + \text{H.c.}$$

The LQ-SMEFT – the case of $\phi(3,1,-1/3)$

• dim. 5: only 2 tree-level generated dim. 5 opts involving $\phi(3,1,-1/3)$:

both violate lepton number by 2 units ...

+ the Weinberg operator;

also generated by Ψ = Ψ (1,1,0) (type I seesaw) and/or Ψ (1,3,0) (type III seesaw): $rac{f_W}{\Lambda_W}ar\ell^c ilde H^\star ilde H^\dagger\ell$

The LQ-SMEFT – the case of $\phi(3,1,-1/3)$

This is the complete list of dim.6 opts for $\phi(3,1,-1/3)$...

Low-energy ∆L=2 effect from the dim.5 opts

expectations & constraints

15

The operator
$$\frac{f_{d^2\phi^2}}{\Lambda_{d^2\phi^2}} \bar{d}d^c\phi^2$$
 contributes only at 2-loop:

Therefore, no useful bound can be set on $\Lambda_{d^2\phi^2}$ (d-quark operator still relevant for colliders whereas s and b-quark operators can generate sub-eV neutrino mass)

We are left with a single class of viable dim.5 opts for TeV-scale physics

$$\frac{f_{d^2\phi^2}}{\Lambda_{d^2\phi^2}} \bar{d}d^c\phi^2$$

O(1) Wilson coefficients & a TeV-scale cutoff:

Consider also the up-type $\phi(3,1,2/3)$; 4 possible dim.5 opts

$$\Delta \mathcal{L}_{\phi SM}^{(5)} = \frac{f_{\ell u \phi H}}{\Lambda_{\ell u \phi H}} \bar{\ell} u \tilde{H} \phi^* + \frac{f_{\ell d \phi H}}{\Lambda_{\ell d \phi H}} \bar{\ell} dH \phi^* + \frac{f_{q e \phi H}}{\Lambda_{q e \phi H}} \bar{q} eH \phi + \frac{f_{u^2 \phi^2}}{\Lambda_{u^2 \phi^2}} \bar{u} u^c \phi^2 + \text{H.c.}$$

Similar importance for
$$\phi$$
 (3,1,2/3) production @LHC:
$$\frac{f_{u^2\phi^2}}{\Lambda_{u^2\phi^2}}\bar{u}u^c\phi^2$$

also not constrained: $M_{\phi} < \Lambda_{u2\phi2} \sim O(\text{few TeV}) \& f_{u2\phi2} \sim O(1)$

signals of the LQ-SMEFT paradigm

New & surprising LNV (△L=2) LQ collider signatures @LHC13 & beyond

CSX's calculated with MadGraph5;

producing a dedicated UFO model for the LQ-SMEFT framework (using FeynRules ...)

Assume 3rd generation LQ's

(couple dominantly to 3rd gen. lepton-quark pairs)

$d^2\phi^2 \& u^2\phi^2$ opts effects $\phi\phi$ pair production:

QCD production:
$$\widehat{\sigma}(pp_{(gg,qq)} \to \phi\phi^*) \alpha \frac{1}{\widehat{s}}$$
 opposite-charged $\phi\phi^*$ production

$d^2\phi^2 \& u^2\phi^2$ opts effects $\phi\phi$ pair production:

expectations with NP scale Λ =5 TeV @LHC13

	LQ-SMEFT (dim.5: <u>∧=5 TeV</u>)		L _{∮SM} (dim. 4)
	$d^2\phi^2$: $pp_{(dd)} o \phi\phi$	$\mathbf{u^2} \phi^2$: $pp_{(uu)} \rightarrow \phi \phi$	QCD: $pp_{(gg,qq)} o oldsymbol{\phi}^*$
σ(M _φ =1 TeV)	14 fb	77 fb	3 fb
$\sigma(M_{\phi}=2 \text{ TeV})$	0.3 fb	3 fb	0.005 fb

$$\widehat{\sigma}(pp_{(qq)} \to \phi\phi) \gg \widehat{\sigma}(pp_{(\overline{qq})} \to \phi^*\phi^*)$$

Asymmetric $\phi\phi$ vs $\phi^*\phi^*$ prod (enhanced dd/uu pdf's ...)

$$\widehat{\sigma}(pp_{(qq)} \to \phi\phi) \gg \widehat{\sigma}(pp_{(\overline{qq})} \to \phi^*\phi^*)$$

Asymmetric $\phi\phi$ vs $\phi^*\phi^*$ prod (enhanced dd/uu pdf's ...)

For "down type" LQ:

When the LQ decays to 3rd gen fermions:

(note: decay of $\phi(3,1,2/3) \rightarrow quark+lepton$ are pure EFT ...)

LQ-SMEFT (dim.5)				
3^{rd} gen $\phi(3,1,-1/3)$	3^{rd} gen $\phi(3,1,2/3)$			
$d^2\phi^2$: $pp_{(dd)} o \phi\phi$	$\mathbf{u^2}\phi^2$: $pp_{(uu)} o \phi\phi$			
$oldsymbol{\phi}oldsymbol{\phi} o {f tt} au^- au^-$	$\phi\phi \to tt+\cancel{p}_{T}$			
	$\phi\phi\to\tau^+\tau^+\!\!+\!\!2\!\cdot\!j_b$			

When the LQ decays to 3rd gen fermions:

(note: decay of $\phi(3,1,2/3) \rightarrow \text{quark+lepton}$ are pure EFT ...)

LQ-SMEFT (dim.5)				
3^{rd} gen $\phi(3,1,-1/3)$	3^{rd} gen $\phi(3,1,2/3)$			
extstyle ext	$\mathbf{u^2}\phi^2$: $pp_{(uu)} o \phi\phi$			
$\phi\phi \to tt\tau^-\tau^-$	$\phi\phi \rightarrow tt+\cancel{p}_{T}$			
	$\phi\phi \rightarrow \tau^+\tau^++2\cdot j_b$			

Same-charge $\phi\phi$ production yields same-sign lepton pairs! In contrast to the conventional QCD LQ pair production signals:

$$\begin{array}{c} \textbf{L}_{\phi \text{SM}} \text{ (dim. 4)} \\ \textbf{3}^{\text{rd}} \text{ gen } \phi (\textbf{3}, \textbf{1}, -1/3) \text{ or } \phi (\textbf{3}, \textbf{1}, 2/3) \\ \\ \textbf{QCD: } pp_{(gg,qq)} \rightarrow \phi \phi^* \\ \phi \phi^* \rightarrow \bar{t} t \tau^+ \tau^-, \bar{t} t + \not\!\!\!E_T \\ \\ \phi \phi^* \rightarrow \tau^+ \tau^- + 2 \cdot j_b, \ 2 \cdot j_b + \not\!\!\!E_T \\ \\ \phi \phi^* \rightarrow t \tau^+ / t \tau^- + j_b + \not\!\!\!E_T \end{array}$$

LQ-SMEFT (dim.5)				
3 rd gen φ(3,1,-1/3)	3 rd gen φ(3,1,2/3)			
$d^2\phi^2$: $pp_{(dd)} o \phi\phi$	$\mathbf{u^2}\phi^2$: $pp_{(uu)} \rightarrow \phi\phi$			
$oldsymbol{\phi}oldsymbol{\phi} o {f tt} au^{-} au^{-}$	$\phi\phi o tt+ ot\!$			
	$\boldsymbol{\phi}\boldsymbol{\phi} \rightarrow \boldsymbol{\tau}^{\textbf{+}}\boldsymbol{\tau}^{\textbf{+}}\textbf{+}\textbf{2}\cdot\boldsymbol{j}_{b}$			

- Typical rates at 13 TeV LHC with 300 fb⁻¹ (after top-decays ...): $\underline{M_{\phi}}=1 \text{ TeV } \& \Lambda=5 \text{ TeV}$
 - 5000 positively charged $\tau^+\tau^+$ events via $pp \to \phi\phi \to \tau^+\tau^+ + 2\cdot j_b$
 - 500 negatively charged $\tau^-\tau^-$ events via $pp \to \phi\phi \to \tau^-\tau^- + 2\cdot j_b + 4\cdot j$
 - 50 positively charged l^+l^+ events via $pp o \phi \phi o l^+l^+$ + $2 \cdot {\sf j}_{\sf b}$ + $\not\! E_{\sf T}$

Much smaller rate for corresponding opposite-sign lepton pair events!

Unfortunately, LHC13 can be sensitive to these same-charge $\phi\phi$ signals only up to M $_{\phi}\sim$ 1-2 TeV

 $CSX(\phi\phi)$ drops sharply with M $_{\phi}$ @LHC13 due to the limited phase-space

 $\phi\phi$ pair production @ higher energy colliders

φφ pair production @ higher energy colliders

Future higher-energy hadron colliders will be sensitive to the LQ-SMEFT dynamics up to LQ masses of $\underline{\text{M}_{\phi}} \sim 5 \text{ TeV}$ & NP scale of $\Lambda \sim 15 \text{ TeV}$ i.e., with CSX's for same-sign charged leptons larger than $\sigma \sim \text{O}(1 \text{ fb})$

Conclusion

- Introducing the LQ-SMEFT framework:
 - LQ assumed to be one of the "light" fields
 - leading effects from several new ∆L=2 dim.5 effective opts
 (beyond the well known higher scale Weinberg opt):
 - new LNV same-sign lepton pair signals @multi-TeV colliders
 - 2-loop Majorana Neutrino masses from NP scales Λ ~ O(5 TeV)
- "smoking gun" same-sign lepton pair signals at the LHC13 with
 <u>asymmetric double-charge rates</u>
 and CSX's much larger than the
 "standard" opposite-sign lepton pair signals
- Sensitivities up to M(LQ) ~ 2 TeV @LHC13 [Λ ~5 TeV] & M(LQ) ~ 5 TeV @FCC-hh100 [Λ ~15 TeV]

Backups & more slides

The large yukawa coupling case $y \geq O(1)$

• In addition to single LQ prod. can also have t-channel LQ exchanges:

which are important for large yukawa coupling $y \gtrsim O(1)$ and can give better access to the large LQ mass regime (where LQ pair production is phase-space suppressed).

up-type LQ $\phi(3,1,2/3)$ @ renormalizble level

• Yukawa-like interactions of this type only contain the term:

$$y_{d^i d^j}^R \bar{d}_R^{ci} d_R^j \phi$$

Which violates baryon #, and in the presence of higher dim operators may mediate proton decay.

Assume this coupling is vanishingly small

LQ-SMEFT with $\phi(3,1,-1/3)$ & $\phi(3,1,2/3)$ @dim.5

$$\frac{f_W}{\Lambda_W} \bar{\ell}^c \tilde{H}^{\star} \tilde{H}^{\dagger} \ell$$

dim.5 SM fields: Weinberg opt

$$\Delta \mathcal{L}_{\phi SM}^{(5)} = \frac{f_{\ell d\phi H}}{\Lambda_{\ell d\phi H}} \bar{\ell} d\tilde{H} \phi^* + \frac{f_{d^2 \phi^2}}{\Lambda_{d^2 \phi^2}} \bar{d} d^c \phi^2 + \text{H.c.}$$

dim.5 $\phi(3,1,2/3)$ opts

$$\Delta \mathcal{L}_{\phi SM}^{(5)} = \frac{f_{\ell u \phi H}}{\Lambda_{\ell u \phi H}} \bar{\ell} u \tilde{H} \phi^* + \frac{f_{\ell d \phi H}}{\Lambda_{\ell d \phi H}} \bar{\ell} dH \phi^* + \frac{f_{q e \phi H}}{\Lambda_{q e \phi H}} \bar{q} eH \phi + \frac{f_{u^2 \phi^2}}{\Lambda_{u^2 \phi^2}} \bar{u} u^c \phi^2 + \text{H.c.}$$

dim.5 $\phi(3,1,-1/3)$ opts

• If both up & down-type SU(2) singlet scalar LQ's are included as light DOF's then we obtain four more dim.5 opts:

$$\bar{q}\ell^c\phi_d^*\phi_u^*, \ \bar{u}e^c\phi_d^*\phi_u^*, \ \bar{q}q^c\phi_d\phi_u \ \text{and} \ \bar{d}u^c\phi_d\phi_u$$

The 2-loop
$$\frac{f_{d^2\phi^2}}{\Lambda_{d^2\phi^2}} \bar{d}d^c\phi^2$$
 contribution:

- d-quark: 2-loop neutrino mass is too small $m_{\nu} \sim 10^{-4} \; \mathrm{eV}$ for $f_{d^2\phi^2} \cdot (y_{d\nu}^L)^2 \sim \mathcal{O}(1)$, therefore no useful bound can be set on $dd^c\phi^2$
- · s-quark: resulting mass consistent with oscillation data $m_{\nu} \sim {
 m eV}$ for a NP scale of several TeV and $f_{s^2\phi^2} \cdot \left(y_{s\nu}^L\right)^2 \sim \mathcal{O}(1)$ therefore no useful bound can be put on $\bar{s}s^c\phi^2$
- b-quark: We obtain $m_{\nu} \sim \text{KeV for } f_{b^2\phi^2} \cdot \left(y_{b\nu}^L\right)^2 \sim \mathcal{O}(1)$ and a NP scale of several TeV. Therefore either

$$\Lambda_{b^2\phi^2} \sim \mathcal{O}(1000) \text{ TeV or } f_{b^2\phi^2} \cdot \left(y_{b\nu}^L\right)^2 \sim \mathcal{O}(10^{-3})$$

Tree-level

$$m_{\nu}(\Lambda) \sim f_W \cdot \frac{v^2}{\Lambda_W}$$

1-loop

both opts severely suppressed

e.g., if ϕ is a 3rd gen LQ with $\gamma_{ql}{}^L \sim O(1)$ then $f_{ld\phi H} < O(10^{-6})$ for $\Lambda \sim O(1~TeV)$

v-less 2β (Ovββ) decay

$$\frac{\Lambda_{d^2\phi^2}}{\text{TeV}} \gtrsim 150 \cdot \frac{f_{d^2\phi^2} \cdot |y_{ue}^R|^2}{(M_\phi/\text{TeV})^4}$$

no useful bound if ϕ is a 3^{rd} gen LQ with

i.e., if $y_{\mu}^{R} \sim 0.1$ or smaller, then $M_{\phi} < \Lambda \sim O(\text{few TeV}) \& f_{d2\phi2} \sim O(1)$ are allowed ...

The heavy fermionic state $\Psi(1,1,0)$ can generate all dim. 5 opt's:

$$\frac{f_W}{\Lambda_W} \bar{\ell}^c \tilde{H}^* \tilde{H}^{\dagger} \ell \qquad \frac{f_{\ell d\phi H}}{\Lambda_{\ell d\phi H}} \bar{\ell} d\tilde{H} \phi^* \qquad \frac{f_{d^2 \phi^2}}{\Lambda_{d^2 \phi^2}} \bar{d} d^c \phi^2$$

Therefore, there are several scenarios that do not require small couplings:

- 1. Ψ (1,1,0) generates all dim. 5 opt's: Weinberg, $Id\phi H$ and $d^2\phi^2$ with a typical scale of $M_{\Psi}\sim O(10^{14}~GeV)$. In this case, $m_{\nu}< eV$ is generated @ tree-level via type I seesaw by the Weinberg opt whereas the 1-loop and 2-loop contributions from $Id\phi H$ and $d^2\phi^2$ respectively are negligible.
- 2. $\Psi(1,3,0)$ generates both Weinberg and Id ϕ H while $d^2\phi^2$ is generated by a different mediator. Then, with $M_{\Psi}\sim O(10^{14}~GeV)$, $m_{\nu}< eV$ is generated at tree-level through the type I or III seesaw by the Weinberg opt, and the 1-loop contribution from the dim.5 opt Id ϕ H is subdominant.
- 3. The Weinberg opt is not relevant to neutrino masses (there are no heavy states that generate it ...). In this case $m_v < eV$ may still be generated @ 1-loop or 2-loop through the dim.5 opt $Id\phi H$ or $d^2\phi^2$ respectively (rather than through a seesaw ...), if these opt's are generated @ tree-level by other heavy mediators.

Assume 3rd generation LQ's

(couple dominantly to 3rd gen. lepton-quark pairs)

easy to construct: with a Z₃ generation symmetry,
 under which the physical SM fermions transform as:

$$\psi^k \to e^{i\alpha(\psi^k)\tau_3}\psi^k \ , \quad \tau_3 \equiv 2\pi/3$$

$$\alpha(\psi^k) = Z_3$$
 charges

Assume 3rd generation LQ's

(couple dominantly to 3rd gen. lepton-quark pairs)

<u>easy to construct</u>: with a Z_3 generation symmetry, under which the physical SM fermions transform as:

$$\psi^k \to e^{i\alpha(\psi^k)\tau_3}\psi^k \ , \quad \tau_3 \equiv 2\pi/3$$

 $\alpha(\psi^k) = Z_3$ charges

- A simple example:
 - fermion charges: $\alpha(\psi^k)=k$, k=generation index
 - LQ charge: $\alpha(\phi)=3$

For
$$3^{rd}$$
 gen $\phi(3,1,-1/3)$:

For 3rd gen
$$\phi$$
(3,1,-1/3): $\mathcal{L}_{Y,\phi_3} \approx y_{q_3\ell_3}^L \left(\bar{t}_L^c \tau_L + \bar{b}_L^c \nu_{\tau L}\right) \phi^* + y_{u_3e_3}^R \bar{t}_R^c \tau_R \phi^* + \text{H.c.}$

 Z_3 gen. symmetry is exact in the limit of a diagonal CKM; Z_3 -breaking ~ off-diagonal CKM ...

it is broken in the underlying heavy theory \Rightarrow proportional to $v^2/\Lambda^2 \leftrightarrow O(1)$...

Breaking the Z_3 generation symmetry @ $E > \Lambda$

In the SM sector

Generation breaking in the SM can be traced to the higher dim opts involving the Higgs and fermion fields: e.g., off-diagonal Yukawa couplings from the dim.6 opts:

$$\Delta \mathcal{L}_{qH} = \frac{H^{\dagger}H}{\Lambda^2} \cdot \left(f_{uH}\bar{q}_L\tilde{H}u_R + f_{dH}\bar{q}_LHd_R \right) + h.c.$$

If e.g., Λ ~ 1.5, 3 or 5 TeV and $f_{uH,dH}$ ~ O(1) , then the Resulting effective Yukawa couplings:

$$Y_{eff} = f_{qH} \cdot v^2 / \Lambda^2 \sim O(y_b), O(y_c) \text{ or } O(y_s), \text{ respectively } ...$$

In the LQ sector

If $\Phi(3,2,1/6)$ couples to 1^{st} and/or 2^{nd} generation down-quarks & ϕ is a 3^{rd} gen LQ, then the Z_3 gen symmetry is broken and the scale of gen breaking is $M_{\Phi(3,2,1/6)}$;

 $\Phi(3,2,1/6)$ is the mediator of generation breaking ...

The gen breaking effect is $\sim g_{\Phi dd} \cdot g_{\Phi \phi \phi}/M_{\Phi}$

Matching to the EFT framework: $g_{\Phi dd} \cdot g_{\Phi \phi} \rightarrow f_{d2\phi2}$, $M_{\Phi} \rightarrow \Lambda_{d2\phi2}$

$$\frac{f_{d^2\phi^2}}{\Lambda_{d^2\phi^2}}\bar{d}d^c\phi^2$$

 \mathbf{E}

New Heavy physics

Intermediate heavy states of the underlying theory with M(heavy) > Λ that can be indirectly probed (in the EFT framework)

Λ

O(100 TeV)

light LQ's: $M_{\phi} < \Lambda$

$$\phi(3,1,-1/3)$$
 or $\phi(3,1,2/3)$

$$\mathcal{L} = \mathcal{L}_{\phi SM} + \sum_{n=5}^{\infty} \frac{1}{\Lambda^{n-4}} \sum_{i} f_i O_i^{(n)}$$

(O_i constructed out of the SM+LQ fields and SM symmetries)

Constructing the EFT

• Quantum number specification:

• Scalars:

 $H: SM scalar isodoubet \sim (1, 2, 1/2)$

 \tilde{H} : SM scalar isodoubet $\sim (1, 2, -1/2)$

 ϕ : leptoquark $\sim (3, 1, -1/3)$

Fermions

$$\begin{array}{ll} \text{left-handed} & \text{right-handed} \\ l \sim (1,\,2,\,-1/2) & l^c \sim (1,\,2,\,1/2) \\ q \sim (3,\,,\,2,\,1/6) & q^c \sim (\overline{3},\,,\,2,\,-1/6) \\ u^c \sim (\overline{3},\,1,\,-2/3) & u \sim (3,\,1,\,2/3) \\ d^c \sim (\overline{3},\,1,\,1/3) & d \sim (3,\,1,\,-1/3) \\ e^c \sim (1,\,1,\,1) & e \sim (1,\,1,\,-1) \end{array}$$

Dim 5 and dim 6 operator expansions validated with Mathematica package:

B. Henning, X. Lu, T. Melia, H. Murayama, JHEP 1708 (2017) 016, arXiv:1512.03433

When the LQ decays to 3rd gen fermions:

(note: decay of $\phi(3,1,2/3) \rightarrow quark+lepton$ are pure EFT ...)

LQ-SMEFT (dim.5)		L _{\$\phi SM} (dim. 4)
3^{rd} gen $\phi(3,1,-1/3)$	3^{rd} gen $\phi(3,1,2/3)$	3^{rd} gen $\phi(3,1,-1/3)$ or $\phi(3,1,2/3)$
$d^2\phi^2$: $pp_{(dd)} o \phi \phi$	$\mathbf{u^2}\phi^2$: $pp_{(uu)} o \phi\phi$	QCD: $pp_{(gg,qq)} o oldsymbol{\phi}^*$
$oldsymbol{\phi}oldsymbol{\phi} o {\sf tt} au^- au^-$	$oldsymbol{\phi}oldsymbol{\phi} o$ tt+ $ oldsymbol{ ilde{E}}_{T}$	$oldsymbol{\phi}oldsymbol{\phi}^* ightarrowar{t}$ t $ au^+ au^-$, $ar{t}$ t $+ oldsymbol{E}_{T}$
$oldsymbol{\phi}oldsymbol{\phi} ightarrow\ 2\cdot\mathbf{j}_{b}\mathcal{+}\mathcal{E}_{T}$	$\boldsymbol{\phi}\boldsymbol{\phi} \rightarrow \boldsymbol{\tau^{+}\tau^{+}+2\cdot j_{b}}$	$\phi\phi^* \rightarrow \tau^+\tau^- + 2\cdot j_b$, $2\cdot j_b + \not E_T$
$oldsymbol{\phi}oldsymbol{\phi} o oldsymbol{t} au^{ extsf{-}} + oldsymbol{j}_{b} + oldsymbol{E}_{T}$	$oldsymbol{\phi}oldsymbol{\phi} ightarrow oldsymbol{t} au^+\!\!+\!\! oldsymbol{j}_b\!\!+\!\!oldsymbol{\!\!\!/} oldsymbol{t}_{T}$	$oldsymbol{\phi} oldsymbol{\phi}^* \!\! o t au^+ \! / t au^- \!\! + j_b \!\! + \!\! / \!\! E_{T}$

Extra handle for these LQ-SMEFT signals

Asymmetric same-sign lepton production, e.g, :

$$N(tt\tau^{-}\tau^{-}) \ge N(\bar{t}\bar{t}\tau^{+}\tau^{+})$$
, $N(\tau^{+}\tau^{+} + 2\cdot j_{b}) \ge N(\tau^{-}\tau^{-} + 2\cdot j_{b})$
 $\phi(3,1,-1/3)$ $\phi(3,1,2/3)$

 $\phi(3,1,-1/3)$ $\phi(3,1,2/3)$ \Rightarrow Useful double-charge asymmetries with no irreducible backg, e.g.,

$$A_{\tau\tau} \equiv \frac{|\sigma\left(pp \to \tau^{-}\tau^{-} + X_{j}\right) - \sigma\left(pp \to \tau^{+}\tau^{+} + X_{j}\right)|}{\sigma\left(pp \to \tau^{-}\tau^{-} + X_{j}\right) + \sigma\left(pp \to \tau^{+}\tau^{+} + X_{j}\right)} \sim 1$$

X_i = any accompanying jet

Same-sign dilepton SM BG

- · Additional BG from fake/misidentified leptons is subdominant

- SM BG is controlled via "no MET" veto
- Signal yields <u>prompt</u> and <u>well isolated</u> same-sign leptons (emanate from TeV-scale particles)