

Calorimetry in the sPHENIX Experiment at RHIC

John Haggerty

Brookhaven National Laboratory

For the sPHENIX Collaboration

sPHENIX in a nutshell

The sPHENIX experiment at Brookhaven is a second-generation RHIC experiment designed to measure jets and the upsilon states in heavy ion collisions in order to characterize the transport coefficients of the quark-gluon plasma

• 2012 Initial proposal

- 2015 BaBar magnet acquired from SLAC
- 2016 CD-0 (mission need), begin PHENIX removal
- 2018 CD-1/3a (begin final design, place long lead time procurements)
- 2019 PD-2/3 (begin construction—in process, review complete), complete PHENIX removal
- 2021-2022 Planned installation
- 2023 Planned first RHIC run of sPHENIX

sPHENIX detector concepts

- High rate data acquisition (record 15 kHz)
- 100 MeV/c² mass resolution on the Υ states
 - 1.4T superconducting magnet
 - High resolution tracking system (TPC+silicon vertex detectors)
- Uniform electromagnetic and hadronic calorimetry covering $0 < \varphi < 2\pi$ and $|\eta| < 1$
 - Electron triggering for $\Upsilon \rightarrow e^+ e^-$
- Silicon vertex detectors for heavy flavor tagging

Why continue at RHIC?

- Increased coupling to the medium near $T_{\rm c} \Leftrightarrow$ stronger dijet suppression at RHIC
 - For example, Z-B Kang, J Reiten, <u>I Vitev</u>, B Yoon, "Light and heavy flavor dijet production and dijet mass modification in heavy ion collisions", Phys. Rev. D99 034006 (2019), but there are many other examples

Physics challenge #1: Jets

- Central Au+Au event illuminates full HCAL
- dET/d η ~ 500 GeV, with significant azimuthal modulation
- Underlying event (UE): 40 ± 3.5 GeV in the area of a R = 0.2 jet
- Inclusive PYTHIA8 jets smeared by p+p jet resolution determined from full GEANT4 and by the underlying central Au+Au event fluctuations – unfolded back to truth distribution

Physics challenge #2: Υ(1S,2S,3S)

- Although the Υ states will be reconstructed with tracks in the TPC, the e⁺e⁻ will be identified with the EMCAL
- In p+p collisions, it is necessary to trigger on events with e⁺e⁻ candidates

Solenoid

Solenoid leaving SLAC January 2015

Full current test February 2018

2019.07.30

Property	Value
Segmentation	0.025x0.025 256x96 = 24576
SiPM's/tower	4

0.7

2.3

2.3%

14.4

> 9

EMCAL properties

Radiation length

Sampling fraction

Moliere radius

Tower length

Fiber spacing

Shaping time

Energy resolution

Density

Fiber

0.47 St. Gobain BCF12 SC	mm
1	mm
30	ns
< 16%/√E ⊕ 5%	ΔE/E
DPF 2019	

Units

 $\Delta \varphi \mathbf{x} \Delta \eta$

cm

cm

cm

g/cm³

towers or channels

EMCAL block fabrication (UIUC)

EMCAL half sector

- $\Delta\eta x \Delta \phi \sim 0.025$ towers
- 4 3x3 mm SiPM's per tower
- Shaped analog signal transmitted off-detector
- Cooling as low as 0°C

HCAL properties

Property	Value	Unit
Segmentation	0.1x0.1 64x24 = 1536	$\Delta \phi$ x $\Delta \eta$ towers or channels
SiPM's or tiles per tower	5	
Sampling fraction	2.8-3.7% (varies in depth)	
Scintillator	7 mm Extruded polystyrene with 1.5% PTP and 0.01% POPOP	
Fiber	1 mm Kuraray Y-11 (200)	
Tilt angle	12	0
Total depth	> 5	λι
Energy resolution	< 150%/VE	ΔΕ/Ε

- Tilted and tapered steel plates with scintillator tiles between them
- Extruded polystyrene scintillator with wavelength shifting fiber in grooves
- Each tile read out by a 3x3 mm SiPM
- Five tiles analog summed to a ΔηxΔφ~0.1 tower

Calorimeter beam tests at Fermilab TBF

η~0.9

February 2014 Proof of principle

February 2016 February 2017 η~0 sPHENIX geometry https://arxiv.org/abs/1704.01461 (published IEEE TNS)

February 2018

EMCAL meets energy resolution requirement

Calorimeter full size prototypes CONSTRUCTION

EMCAL sector 0 instrumented

First HCAL sector with scintillator tiles

2019.07.30

DPF 2019

SPHENIX

Calorimeter Electronics

- We chose common sensors (Hamamatsu 12572-015P) and electronics for EMCAL and HCAL
- We chose to drive the analog signals to digitizers outside the magnet to avoid designing new ASIC's

SPHE

EMCAL preamp and 60 MHz waveform digitizer

Typical digitized pulse and single pixel peaks from production grade electronics

Simulation

- GEANT4 from the initial design
- Most of the physics plots we show are from full G4 simulation
- Calorimeter simulations have been carefully compared with beam tests

Basic jet performance

SPHENIX

- Jet Energy Scale (JES) and Jet Energy Resolution (JER) in simulation
- Tests Underlying Event (UE)
 subtraction and calorimeter response

- A new detector is being designed for a second generation of experiments at RHIC
- Full electromagnetic and hadronic calorimetry combined with a superconducting magnet and TPC tracker will provide a new window into the physics of the QGP
- Testing and simulation show that the calorimeters achieve required energy resolution and e/h rejection
- Likely on the eve of construction start to be ready for first collisions in early 2023
- Preliminary three year run plan has been developed, discussion of operating conditions (luminosity, crossing angle) commenced
- More details in <u>TDR</u>
- Studies show that the calorimeters would be suitable for an EIC experiment