Quantum Information Science in pp Collisions at the Energy Frontier

June 29, 2019 DPF 2019 at Northeastern University

<u>Ridge Liu</u>, Yale University Christian Weber, Yale University

O. Keith Baker, Yale University

Yale

Dmitri Kharzeev, Stony Brook University and Brookhaven National Laboratory

Outline

1. Entanglement in particle collisions

- i. Examples
 - a) Charged hadrons
 - b) Diffractive Drell-Yan processes
- ii. R value
- 2. Results
 - i. Higgs production and decay
 - ii. Top-antitop quark pair production
- 3. Next steps

Entanglement

- Pure quantum state can be described using a single ket
- Mixed quantum state a statistical ensemble of quantum states

 $|\psi\rangle$

 $\rho = \sum p_i |\psi_i\rangle\!\langle\psi_i|$

 To describe a subsystem, take the partial trace – generically a mixed state

 $\rho_{A} = \mathrm{Tr}_{B} \rho_{AB}$

- Von Neumann entropy of subregion A
 - If the entire system is a pure state, then S is called the entanglement entropy.

 $S[\rho_A] = -\mathrm{Tr}\rho_A \log \rho_A$

Yale

Entanglement in pp collisions

• Collisions can be probes of subregions

A. A. Bylinkin and A. A. Rostovtsev, Nucl. Phys. B, 888(2014), arXiv:1404.7302 [hep-ph]

- Entanglement can lead to thermal behavior
 - Observed in cold atom systems
 - Kaufman et al., Science 353, 794(2016)
 - Discussion in heavy-ion collisions
 - C. M. Ho and S. D. H. Hsu, Mod. Phys. Lett. A 18, 1650110 (2016)

Example: charged hadrons

Example: Diffractive Drell-Yan

Interaction probes the entire proton \rightarrow no entropy from entanglement!

Yale

O. K. Baker and D. E. Kharzeev, Phys. Rev. D98, 054007(2018), arXiv:1712.04558 [hep-ph] ^{6 of 13}

A. A. Bylinkin and A. A. Rostovtsev, Nucl. Phys. B, 888(2014), arXiv:1404.7302 [hep-ph]

O. K. Baker and D. E. Kharzeev, Phys. Rev. D98, 054007(2018), arXiv:1712.04558 [hep-ph]

Results: Higgs channels

Results: tt pair

A. A. Bylinkin and A. A. Rostovtsev, Nucl. Phys. B, 888(2014), arXiv:1404.7302 [hep-ph]

O. K. Baker and D. E. Kharzeev, Phys. Rev. D98, 054007(2018), arXiv:1712.04558 [hep-ph] ^{10 of}

A. A. Bylinkin and A. A. Rostovtsev, Nucl. Phys. B, 888(2014), arXiv:1404.7302 [hep-ph] O. K. Baker and D. E. Kharzeev, Phys. Rev. D98, 054007(2018), arXiv:1712.04558 [hep-ph] ¹

Summary and next steps

- 1. R is the same for all processes with entanglement we considered: from pions to Higgs to ttbar
- 2. Can we gain some information about parton distribution functions? see our poster!
- 3. Can we construct a quantity that would be sensitive to the existence of new phenomena, e.g. dark sector physics?

References

- 1. O. K. Baker and D. E. Kharzeev, Phys. Rev. D98, 054007(2018), arXiv:1712.04558 [hep-ph]
- 2. A. A. Bylinkin and A. A. Rostovtsev, Nucl. Phys. B, 888(2014), arXiv:1404.7302 [hep-ph]
- 3. A. M. Kaufman et al., Science 353, 794(2016)
- 4. C. M. Ho and S. D. H. Hsu, Mod. Phys. Lett. A 18, 1650110 (2016)