IsoDAR: Neutrino Physics Using a High Current Cyclotron

Joe Smolsky for the IsoDAR collaboration

Overview

Motivation

- Standard model
- Neutrino oscillations
- Anomalies
- Sterile neutrinos

IsoDAR

- Setup
- Physics
- Current Status
- Beyond IsoDAR

Standard Model

Quarks

up, charm, top down, strange, charm

<u>Leptons</u>

electron, muon, tau ν_e, ν_u, ν_{τ}

Force carriers

photon gluon W, Z

Mass

Higgs

Neutrino oscillations

- Interact in flavor eigenstates
- Propagate in mass eigenstates

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} - 4 \sum_{j>i} U_{\alpha i} U_{\beta i} U_{\alpha j}^* U_{\beta j}^* \sin^2 \left(1.27 \Delta m_{ij}^2 \frac{L}{E} \right)$$

arXiv:1609.07803v2 [hep-ex] 2 Aug 2017

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2(2\theta) \sin^2\left(1.27\Delta m^2 \frac{L}{E}\right)$$

- $\sin^2 2\theta \rightarrow \text{statistics}$
- $\frac{L}{E}$ \rightarrow experiment setup
- $\sin^2 2\theta$ vs. Δm^2
- Allow/exclude regions

Example plot from v_{fit} :

http://arxiv.org/abs/1811.05487

http://www.nu-fit.org/

Sterile neutrinos

- Additional neutrino flavors
- Sterile flavors don't interact through weak force
- Active neutrinos can oscillate into sterile neutrinos

arXiv:1906.00045v1 [hep-ex] 31 May 2019

Oscillation Experiments

More oscillation experiments

IsoDAR @ KamLAND: as a definitive ν_s search

- 5σ experiment for allowed regions
- Distinguish between models

IsoDAR: Isotope Decay-At-Rest

5 years @ KamLAND

Detector	KamLAND
Distance between face of target and center of detector	16.1 m
Fiducial mass	897 metric tons
Fiducial radius	6.5 m
Total detector radius	13 m
Detection efficiency	92%
Vertex resolution	$12 \text{ cm}/\sqrt{E \text{ (MeV)}}$
Energy resolution	$6.4\%/\sqrt{E \text{ (MeV)}}$
Visible energy threshold (IBD and $\overline{\nu}_e$ -electron)	3 MeV
IBD event total	8.2×10^5
$\overline{\nu}_e$ -electron event total	2600
Expected $\bar{\nu}_e$ disappearance sensitivity	$\sin^2 2\theta_{new} > 0.005 \ @ \Delta m^2 = 1 \text{eV}^2$
Expected $\sin^2 \theta_W 1\sigma$ precision	3.2%

5 years @ KamLAND

Accelerator

Beam Current

Beam Power (CW)

Duty cycle

Protons/(year of live time)

Run period

Live time

Target

Sleeve diameter and length

 $\overline{\nu}$ source

Fraction of ⁸Li produced in target

 $\overline{\nu}$ flux during 4.5 years of live time

 $\overline{\nu}$ flux uncertainty

 $60 \text{ MeV/amu of H}_2^+$

10 mA of protons on target

600 kW

90%

 1.97×10^{24}

5 years

 $5 \text{ years} \times 0.90 = 4.5 \text{ years}$

⁹Be with FLiBe sleeve (99.995% pure ⁷Li)

100 cm and 190 cm

⁸Li β decay (6.4 MeV mean energy flux)

10%

 $1.3 \times 10^{23} \ \overline{\nu}_e$

5% (shape-only is also considered)

RFQ – Direct Injection Project (RFQ-DIP)

IsoDAR

- H₂⁺ to reduce space-charge effects
- RFQ for bunching, sorting, accelerating
- Inflector for axial injection

Spiral inflector and central region

H_2^+ production

- Hot tungsten filament ionizes hydrogen molecules
- Plasma is confined by SmCo magnets
- Small aperture allows ions to drift into extraction system
- Current output 35 mA/cm² (Sufficient for IsoDAR)

MIST-1

Extraction system

RFQ: 4-vane, split-coaxial design

RFQ Simulations

Spiral Inflector

Parameter	Value	Unit
Electrode voltages	± 12	kV
Input energy	70	keV
Electrode width	1.0	cm
Gap distance	1.8	cm
Aspect ratio	2.5	
Tilt angle	27	\deg

Spiral inflector simulation

Central region

INFN-Catania

- Collimators to scape halo particles
- VP inserts for vertical focusing

Central region

- Preliminary study by AIMA Developpement
- RFQ-DIP: 1 MeV cyclotron

Cyclotron extraction

- Septum at last turn for H_2^+ extraction
- Use stripper foil to minimizes septum activation
- Second foil to transport protons in MEBT

IsoDAR $\bar{\nu}_e$ production

- Protons impinge on ⁹Be target producing neutrons
- Surrounding ⁷Li sleeve captures neutrons producing ⁸Li
- 8 Li β -decays yielding a localized, isotropic $\bar{\nu}_e$ source with known energy distribution

Concurrent research for IsoDAR

- Target designed for high power beam
- Injection of Li-Be mixture into sleeve pressure vessel
- Graphite, steel, concrete for neutron shielding

Isotope production

- \sim 50 μ A of protons extracted to protect septum
- Up to 4 stripping locations possible
- Protons can be used to produce medical isotopes
- Or also build machine dedicated to isotope production

Imaging: 68Ge/68Ga

- 69 Ga/ 71 Ga + p \rightarrow 68 Ge \rightarrow 68 Ga
- Similar uses as $^{99}\text{Mo} \rightarrow ^{99\text{m}}\text{Tc}$
- Longer parent half-life: 270 days vs. 66 hours
- Shorter emitter half-life: 68 minutes vs. 6 hours
- \$1000 / mCi of ⁶⁸Ga
- IsoDAR \rightarrow 50 Ci / week

Image from: <u>Semantic Scholar</u>

Therapy: ²²⁵Ac

- p + 229 Th $\rightarrow ^{225}$ Ac $\rightarrow 4\alpha + ^{209}$ Bi
- Current targets ²²⁶Ra from purified reactor waste
- BLIP, LANCE at 100 μ A \rightarrow 60x world supply
- \$1300 / mCi
- IsoDAR at 10 mA → 200 mCi / hr

Medical isotopes with IsoDAR: https://arxiv.org/abs/1807.06627

Nature Reviews Physics: DOI: 10.1038/s42254-019-0095-6NATREVPHYS-19-343V1

Image from: Semantic Scholar

$DAE\delta ALUS$

- IsoDAR as injector for 800 MeV cyclotron
- Decay-at-rest pions as neutrino source
- Make three of these setups

200+ kiloton detector

δ_{CP} measurement

- π^+ decay-at-rest produces: $\bar{\nu}_{\mu}$, ν_{μ}
- Sensitive to $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillation wave
- 3 accelerators at different distances

Summary

- IsoDAR can definitively answer the ν_s question with 5 years of runtime at KamLAND
- RFQ-DIP is developing technology for 10 mA, 60 MeV cyclotrons
- Target, sleeve, and shielding research is well underway
- IsoDAR cyclotrons have other potential uses such as $DAE\delta ALUS$ and medical isotope production

Resources

- IsoDAR: https://www.nevis.columbia.edu/daedalus/docs/publications.html
- Oscillation Experiments: arXiv:1609.07803v2 [hep-ex] 2 Aug 2017
- Sterile Review: arXiv:1906.00045v1 [hep-ex] 31 May 2019

Acknowledgements

Cyclotron design

Parameter	Value	
Ion accelerated	H ₂ ⁺	
Max Energy	60 MeV/amu	
Extraction radius	1.99 meters	
Average magnetic field	1.16 tesla	
Number of sectors	4	
RF frequency	32.8 MHz	
Accel. Voltage	70 – 240 kV	
ΔE/turn	(ave) 1.7 MeV	
Turns	95	
Outer diameter	6.2 meters	
Iron weight	450 tons	

Technical CDR: https://arxiv.org/abs/1511.05130 Conventional CDR: https://arxiv.org/abs/1511.05130 Conventional CDR: https://arxiv.org/abs/1710.09325

Segmentation

- Designed for assembly within Kamioka mine
- Size limited by mining tunnels
- Weight restrictions due to transportation

Splitcoil design

• Coils come in two pieces • No winding in mine

Table 2: MIST-1 ion source parameters.		
Parameter	Value (nominal)	
Plasma chamber length	$6.5~\mathrm{cm}$	
Plasma chamber diameter	$15 \mathrm{cm}$	
Permanent magnet material	$\mathrm{Sm}_{2}\mathrm{Co}_{17}$	
Permanent magnet strength	1.05 T on surface	
Front plate magnets	12 bars (star shape)	
Radial magnets	12 bars	
Back plate magnets	4 bars, 3 parallel rows	
Front plate cooling	embedded steel tube	
Back plate cooling	embedded copper tube	
Chamber cooling	water jacket	
Water flow (both)	(1.5 l/min)	
Filament feedthrough cooling	air cooled heat sink	
Filament material	98% W, 2% Th	
Filament diameter	$\approx 1.5 \text{ mm}$	
Discharge voltage	\max . 150 V	
Discharge current	max. 24 A	
Filament heating voltage	max. 8 V	
Filament heating current	max. 100 A	

Table 5: RFQ cavity geometrical parameters. Select parameters are also shown in Figure 8.

Parameter (description)	Value	Unit
R (cavity radius)	120.00	mm
r (electrode radius)	9.30	mm
d (electrode distance)	18.60	mm
g1 (gap vert. vane \leftrightarrow end plate)	25.62	mm
g2 (gap horz. vane \leftrightarrow end plate)	8.35	mm
p (vane skirt position)	60.0	mm
l1 (horizontal vane length)	1353.07	mm
l2 (vertical vane length)	1370.34	mm
L (cavity length)	1378.69	mm
t (cavity thickness)	20.0	mm
s (vane skirt max. thickness)	30.0	mm
h (vane skirt min. thickness)	10.0	$\overline{\mathrm{mm}}$

Rebunching cell

- Longitudinal focusing at end of RFQ
- Adjustable parameter in design

RFQ longitudinal E-field

Beam dynamics with re-buncher

Mir

Rebunching cell effects

Without rebunching

With rebunching

Rebunching cell effects

Without rebunching

With rebunching

Production in target and sleeve

$\bar{\nu}$ production

Figure 4.28: Distributions for the antineutrino $\bar{\nu}_e$ production points in the IsoDAR target.

