Mu*STAR: A Modular Accelerator-Driven Subcritical Reactor Design

Mary Anne Cummings
Muons, Inc. - http://muonsinc.com/
DPF 2019
What is Muons, Inc.?

- Founded 2002, subsidiaries - MuPlus, MuSTAR - by Scientists from US National Labs – original mission to design a **Muon Collider**
- NEW tools and technology for particle accelerators
- Funded by DOE contracts and SBIR-STTR grants • total of ~$30M
- 9 US university and 11 national lab research partners • Broad, diverse and cutting edge scientific network • We are embedded in both worlds
- Supported 18 post-docs and 6 Ph.D. students
- Muons, Inc. software product **G4beamline** widely used in particle physics, **MuSim** being developed for more general use.
- Mu*STAR accelerator-driven molten-salt nuclear reactors • Major focus of our companies
Mu*STAR: Superconducting RF Linac Driving Molten-Salt Graphite-Moderated Subcritical Modular Reactors

- **Superconducting RF proton Linac**
 - ORNL SNS demo (1.4 MW, SC Linac proton beam)
 - Scales to 25 MW, 1 GeV, $800M$ (ANL Design)
 - Improved by Muons, Inc. inventions

- **Molten-Salt Graphite-Moderated**
 - ORNL MSRE 1965-69, 8 MWt demo
 - Add internal SNS target
 - Virtues described by Bowman, Vogelaar, et al., HBofNE 2010 [1]

- **Subcritical**
 - Additional neutrons by SC technology and spallation

- **Modular Reactors**
 - Built in factories ($<500MWt$)
Why isn’t this already being done?

• **Economics:**
 – Used fuel is not a liability to the operating companies
 – By law, it is the responsibility of the U.S. government
 – The government **pays** the operating companies to store it

 They have no incentive to deal with the used fuel.

• **Technology:**
 – The Department of Energy did a study in the 1990s that concluded ADSR is not viable because the accelerator is barely feasible and far too expensive
 – Today that no longer holds:

 Superconducting Accelerators are now far more efficient and enormously less costly than the study considered.
What is Sustainable?

https://energy.utexas.edu/news/nuclear-and-wind-power-estimated-have-lowest-levelized-co2-emissions

Costs per kW hours:
- solar: $12/W
- nuclear: $6-7/W - over lifetime of reactor

Mu*STAR minus fuel mining and reprocessing ~ 4g

No long-term strategy for sustainable growth of nuclear power in the U.S.
• Molten Salt Reactor Experiment operated at ORNL, 1964-1969.
• Demonstrated the key aspects of using molten salt fuel.
• Critical reactor tested with three different fuels.
• Mu*STAR based on **MSRE parameters**-Temperature, graphite, Hastelloy-N
• Graphite MSRE core $\frac{1}{4}$ linear dimension of Mu*STAR, $4^3 = 64$ times Power
Example: 350 MHz, 140 kW DC Magnetron

- Muons, Inc. Invents Accelerator Technology
 - Magnetrons up to 90% efficient
 - Prototype for Niowave to make Mo-99 – replaces 30 kW tetrode
 - $2/W vs $10/W for klystrons

DPF 2019
Mu*STAR/Muons, Inc.
Superconducting RF Linacs

Breakthrough Technology – Superconducting RF Linac
- Demonstrated at the ORNL Spallation* Neutron Source (SNS)
- Generates many neutrons to control reactor reactivity
- Powerful, efficient, affordable, reliable

*1 p produces > 30 n
Much higher neutron Amplification
1 p produces > 30 n

<table>
<thead>
<tr>
<th>Target</th>
<th>600 MeV</th>
<th>800 MeV</th>
<th>1000 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>3.7</td>
<td>5.3</td>
<td>6.7</td>
</tr>
<tr>
<td>Pb</td>
<td>9.6</td>
<td>14.3</td>
<td>18.5</td>
</tr>
<tr>
<td>W</td>
<td>9.9</td>
<td>16.0</td>
<td>20.0</td>
</tr>
<tr>
<td>U</td>
<td>18.0</td>
<td>26.0</td>
<td>33.3</td>
</tr>
</tbody>
</table>
Universal Reactor Concept

Nuclear Power Reinvented by Mu*STAR

- Currently considered to be waste
 - Spent Nuclear Fuel
 - Surplus Weapons Material
- Enough out of the ground today to supply 100% of current U.S. electricity usage for > 1000 years
 - Natural Uranium
 - Natural Thorium
 - Depleted Uranium

One reactor, many fuels

Subcritical Operation
Immediate, passive response to all accident scenarios: turn the accelerator off and fission stops within 1 second; passive air cooling is then sufficient. Mu*STAR is walk-away safe.

No Enrichment or Reprocessing

Mu*STAR Reactor

Accelerator
- Tuned to the fuel

Turbine/Generator

Heat exchange
- Can burn its own waste for ~ 200 years
SNF Burning Concept

Fuel Processing Plant
- Spent Nuclear Fuel from Light Water Reactor
- Oxides -> Flourides – GAIN award
- Fractional Distillation Column
- Up to 500 MWt 220 MWe
- Underneath Fission Product Storage
- 135Xe
- Tritium
- He back to reactor

SRF Proton Accelerator
- Electric motors
- 750 C
- Molten salt pumps
- Salt flows upward in graphite channels
- Graphite
- Storage tank
- Steel base plate
- Modified Hastelloy-N or graphite encloses all fuel salt
- Vessel has no penetrations below liquid level
- Passive air cooling for decay heat when accelerator is off. No water, steam, or Zr inside the reactor containment.

Reactor concept from C. D. Bowman, R.B. Vogelaar, et al., 2010 HB of NE

DPF 2019

Mu*STAR/Muons, Inc.
SRF Linacs Driving Subcritical MS Reactors
Why This Approach is Superior

Deepest Burn – Unique to SC Linac & MS Reactors
• Driven by Superconducting RF Linacs
 • Newest technology for highest proton power (>25 MW)
• Molten Fluoride Salt Fuel Reactor (MSRE experience)
 • Accommodates short beam interruptions
 • Avoids issues of solid fuel rods
• Internal Spallation target
 • Amplifies neutron flux by factor of >30
• Graphite moderated thermal neutron spectrum
 • Less sensitivity to fission products
New Features

• Subcritical - defense in depth by controlling fuel reactivity (NRC – NOT a reactor, many licensing and import controls issues are avoided)
• Fission turned off by switching the accelerator off
• Continuous removal of volatile radioisotopes
• Versatile reactor design accommodates many fuels
• Decouples nuclear energy from nuclear weapons
Mu*STAR Features

Additional Features/Advantages

• Tested technology put together in a new way
• The reactor operates underground at atmospheric pressure
 • no pressure vessel - eliminates many accident scenarios
• Volatile fission products are continuously removed
 • reactor contains almost a million times less than in a LWR
• No fuel rods/Zircaloy
 • no mechanical fatigue of UO$_2$ fuel rods from accelerator trips
• No critical mass is ever present, and cannot form
 • freeze plug as in all MS designs
• No chemical reprocessing or isotopic enrichment is needed
 • more proliferation resistant than other technologies
• Burns SNF, W-Pu, U233, natural uranium, thorium
 • without redesign –accelerator parameters match fuel
• Passive response to most accident scenarios
 • turn off the accelerator – passive air cooling is then sufficient
Mu*STAR SNF Concept

• Convert SNF to fluoride MS fuel once
 • GAIN award with ORNL, SRNL, INL
• Burn to get 7 times as much energy
 • For 200 years
• Disruptive Technology
 • No uranium mining
 • No fuel enrichment
 • No fuel rod manufacture
 • No new SNF
 • No SNF transport
 • No SNF remote storage
• Consent based storage of SNF
 • Community support
 • Same amount of SNF as now
 • Fuel for their utility
 • Lots of jobs, economic stability
• Goal – electricity for less than gas

Build Mu*s at 60 existing LWR sites

Muons, Inc.
Underground Linac and Reactors
Mu*STAR

Using MuSim MCNP6 single event display

green=neutron, cyan=gamma, brown=graphite, purple=molten-salt fuel.
This single 1 GeV proton generated 402,138 tracks (not counting e⁻).

DPF 2019
Cummings/Muons, Inc. ADSR
We can run much lower than 1 GeV energy ~ 600 MeV will be sufficient and be a significant cost saving on acceleration.
Burning used nuclear fuel (UNF) in Mu*STAR - neutron poisons build up in the fuel, reducing its reactivity and requiring increased accelerator power to maintain a constant thermal output. Identify the elements that are most responsible for reducing the reactivity, so we can concentrate on removing them.
Deep Burn Example #1
New Economics for SNF

- Convert LWR SNF into molten fluoride salt fuel
- Muons New DOE GAIN Award (with ORNL, SRNL, INL)
 - Gateway for Accelerated Innovation in Nuclear (GAIN)
- Example in Handbook of NE (Bowman et al) - Burns the M-S fuel for 200 years
 - In 5 passes in successive reactor units (fuel moved by He pressure)
 - Without chemical reprocessing
 - Only increasing the accelerator power each pass
 - Until it takes 15% of the reactor power to run the accelerator
 - Extract 7 times the energy as was generated by the original LWR
 - Energy normalized waste reduced by more than a factor of 7
 - Toxicity reduced – higher actinides burned
- SNF becomes a valuable commodity
Deep Burn Example #2
Making Tritium for the NNSA

The Vision –
-Mu*STARs at 60 US LWR sites
 burning their existing stored SNF
 for >200 years

How to get there?
Need to build a demo system

Get the NNSA to pay for it
Solve their problems
Save them money
NNSA Makes Tritium Now

- Tritium Production Burnable Absorbing Rods (TPBARS)
- National security function on commercial site
 - Subject to local, state, EPA, NRC regulation
 - Number of TPBARS limited – e.g. tritium in cooling water
 - NNSA pays TVA to use Watts-Bar ($?)
- Reactor fuel must be of national origin
 - Need US owned, US sited uranium enrichment facility (>2B)
- ORNL (Y-12) Li-6 enrichment facility obsolete ($?)
- 2.8 kg/y of tritium needed after 2025
 - Weapon decommissioning ends
 - Additional reactor(s) needed
 - to be upgraded and certified for TPBARS ($?)
- Mu*STAR solves all these problems and saves money
 - Scaled back accelerator and only one Mu*STAR module
 - Essentially a Mu*STAR pilot plant (~$1B)
Mu*Star solution for Tritium at SRS

- Tritium contained in reactor, not TPBARs (saves $)
- Uses natural Li-6 component of the LF MS eutectic (saves $)
- Excess Pu at SRS as fuel (saves $)
- Pu burning easier
 - Subcritical operation
- Built on Savannah River Site (fewer uncertainties)
 - Some accelerator and reactor components from National Labs

- Simulations already show 2.4 kg/y of tritium
 - with 2.5 MW, 1 GeV proton beam
 - on an internal depleted uranium target burning 200kg/y of Pu
Conclusions

• **Mu*STAR is a solution to NE SNF problem**
 – Gets 7 times energy w/o reprocessing
 – Extends life of present reactor sites
 – Defers SNF transport/burial indefinitely

• **Mu*STAR pilot/demo funding**
 – Can solve tritium supply security for NNSA
 – Saves NNSA construction and operation costs
Screen shot of MuSim: carbon is brown, salt is blue, the spallation target (natural uranium) is green; the right side is an editing pane: ADSR-4 is the name of this simulation, and the blue headers are categories to specify the simulation that can be edited; Parameters are for parametrizing the simulation; Definitions define general things like materials; GlobalGeometry includes all objects, solids, sources, and detectors (except objects placed via design coordinates); DesignCoordinates are for a beamline and define its centerline for placing objects.
Mu*Star solution for Tritium at SRS

• Tritium contained in reactor not TPBARs (saves $)
 – Removed continuously at low partial pressure
 – Reduced embrittlement and escape potential
• Uses natural Li-6 component of the LF MS eutectic
 – Upgrade of Y-12 enrichment plant not needed (saves $)
• Excess Pu at SRS as fuel
 – Environmental Management (EM) operates SRS
 • wants to get rid of many tons of it
 – No enriched uranium needed (saves >$2B)
• Pu burning easier
 – Subcritical operation overcomes PuF3 solubility limitations
 – Pu has fewer delayed neutrons than U235
 – U238 Doppler broadening not available or needed
• Built on Savannah River Site (fewer uncertainties)
 – Some accelerator and reactor components from National Labs

• Simulations already show 2.4 kg/y of tritium
 – with 2.5 MW, 1 GeV proton beam
 – on an internal depleted uranium target burning 200kg/y of Pu