The Chilling Recount of an Unexpected Discovery: First Observations of the Plasma-Cascade Instability in the Coherent Electron Cooling Experiment

Irina Petrushina

Stony Brook University

August 1, 2019

Electron Ion Collider – eRHIC

BROOKHAVEN

1 Project Overview

- **2** Accelerator Performance
- (3) Experiment with FEL-based System and Unexpected Result
- 4 Plasma-Cascade Instability
- **5** Future Plans and Conclusions

What is Coherent electron Cooling?

Short answer: stochastic cooling of hadron beams with bandwidth at optical wave frequencies: 1-1000 THz.

Long answer:

¹Brookhaven National Laboratory, Upton, Long Island, New York, USA ²Thomas Jefferson National Accelerator Facility, Newport News, Virginia, USA (Received 24 September 2008; published 16 March 2009)

CeC Proof of Principle Experiment

Goal: demonstrate longitudinal cooling of a single Au^{+79} bunch in the Relativistic Heavy Ion Collider.

Common Section with RHIC

Irina Petrushina (SBU)

CeC Accelerator

- 113 MHz SRF gun with CsK₂Sb photocathode. Cathode operation—weeks.
- 532 nm drive laser.
- Two 500 MHz copper cavities for ballistic compression to the required peak current.
- 704 MHz SRF accelerator cavity.

Demonstrated e-beam parameters				
Normalized emittance, mm-mrad	3-4			
Relative energy spread σ_E/E	$3 imes 10^{-4}$			
Bunch charge, nC	0.03 - 10.7			
Pulse repetition rate, kHz	78			
RMS bunch length, ps	10-500			
Kinetic energy, MeV	14.5			

113 MHz SRF gun with warm CsK_2Sb photocathode

Irina Petrushina (SBU)

August 1, 2019 5 / 13

Achieved parameters of the e^- beam.

Parameter	Design	Status	Comment
Species in RHIC (GeV/u)	$Au^{+79} 40$	Au^{+79} 26.5	to match e-beam
Electron energy (MeV)	21.95	14.56	linac quench
Charge per e-bunch (nC)	0.5-5	0.1-10.7	\checkmark
Peak current (A)	100	50-100	\checkmark
Bunch duration (psec)	10-50	12	\checkmark
Normalized emittance (μm)	<5	3-5	\checkmark
Energy spread, RMS $(\%)$	0.1	0.1	\checkmark
FEL wavelength (μm)	13	31	new IR diagnostics
Repetition rate (kHz)	78.18	78.18	\checkmark
CW beam (μA)	<400	150	\checkmark

Puzzle of the CeC Run 18

Evolution of the bunch lengths for interacting (blue trace) and witness bunches (orange and green traces).

Heating of ion beam was occurring only with a perfect overlap of the beams and high FEL gain. Reducing the FEL gain eliminated the heating.

Puzzle of the CeC Run 18

- Bunch spectra have demonstrated a broadband PCI gain peaking at ~0.4 THz in an uncompressed beam.
- Bunched beam spectrum has a peak at 10 THz.
- The measurements were confirmed through simulations done by SPACE and Impact-T.

Beam profiles showing the dependence of the structures on charge per bunch.

Plasma-Cascade Instability (PCI)

Plasma-Cascade Instability—

longitudinal plasma oscillation with periodically varying plasma frequency:

 $\tilde{n}'' + \omega_p^2(s)\tilde{n} = 0$ a(s), ω, 21 30 12 20 10 10 $\hat{a}^{\prime\prime}-k_{\rm sc}^2\hat{a}^{-1}-k_{\beta}^2\hat{a}^{-3}=0, \ \, \hat{n}^{\prime\prime}+2k_{\rm sc}^2\hat{a}^{-2}\hat{n}=0. \label{eq:alpha}$ $\hat{a} = \frac{a}{a_0}, \ \hat{s} = \frac{s}{l} \in \{-1, 1\}$ k_{sc} 10 20 30 0 40 $k_{\rm sc} = \sqrt{\frac{2}{\beta^3 \gamma^3} \frac{I_0}{I_a} \frac{l^2}{a_a^2}}, \ k_\beta = \frac{\varepsilon l}{a_a^2}$

August 1, 2019

9 / 13

Irina Petrushina (SBU)

Goal of 2019

Demonstrate generation of electron beam with parameters satisfying or exceeding requirements for the CeC demonstration experiment.

- As a result of optimization we were able to achieve the IR signal only factor two above shot noise level.
- The optimized set-up has rather flat response of the noise on the variation of the solenoid current leaving sufficient headroom for optimizing other beam parameters.

PCI applications \rightarrow ACeC

- Mechanical design of the new CeC system is completed.
- New laser system is procured and commissioned.
- All new vacuum chambers with beam diagnostics are built and installed.
- All solenoids are designed, manufactured, delivered and underwent magnetic measurements.
- Assembly of the ACeC can be completed during this year.

- Accelerator delivered the beam with parameters suitable for the CeC PoP experiment:
 - Normalized emittance as low as 0.35 mm-mrad for a 600 pC bunch was measured.
 - Relative energy spread 3×10^{-4} was demonstrated.
- We were unable to demonstrate the imprint of the hadrons on the electron beam due to the discovered Plasma-Cascade Instability.
- The development of the PCI was experimentally confirmed in the dedicated studies, and methods for its suppression were developed.

August 1, 2019

12 / 13

• The PCA-based CeC system will be tested during Runs 20-22.

Thank you for your attention!

Plasma-Cascade Instability (PCI)

Plasma-Cascade Instability

Longitudinal plasma oscillation with periodically varying plasma frequency:

$$\tilde{n}^{\prime\prime}+\omega_p^2(s)\tilde{n}=0$$

FODO

Betatron motion in a FODO cell:

$$y'' + K_y(s)y = 0$$

August 1, 2019

Irina Petrushina (SBU)

Litvinenko, Wang, Kayran, Jing, Ma, 2017

Litvinenko, Cool 13

Irina Petrushina (SBU)

Advantages and Disadvantages

- The best studied and fully explored scheme
- Experimentally demonstrated both as instability and amplifier
- 3D FEL theory and simulation are very advanced
- Can operate at relatively low electron beam peak currents
- Allows in principle economic option without separating electron and hadron beams

- When compared with microbunching amplifier, it has relatively lower bandwidth ~ few % of the FEL frequency
- FEL saturates at lower gain than micro-bunching amplifier
- Semi-periodic structure of the modulation limits the range where cooling occurs

Advantages and Disadvantages

- Very broad band amplifier, can operate at significant gain without saturation
- Plasma-cascade micro-bunching instability was experimentally demonstrated
- Has good theoretical model and is extensively studied in 3D numerical simulations
- Cool hadrons with all energy deviation (no anti-cooling)
- Does not require (full) separation of electron and hadron beams

- Micro-bunching amplifier was not demonstrated
- Requires better quality electron beam than FEL amplifier
- Can operate for medium hadron energies (up to hundreds of GeV, such as US EIC), but can not be extended to LHC energies
- Less studied than FEL-based CeC

Plasma-Cascade Microbunching amplifier

What is cooling and why do we need it?

Luminosity characterizes the ability of a particle accelerator to produce the required number of interactions:

$$\frac{dN}{dt} = \sigma \cdot L \tag{1}$$

$$L = \frac{N_1 \times N_2 \times frequency}{Overlap \ Area} = \frac{N_1 \times N_2 \times f_{coll}}{4\pi\beta^*\varepsilon} \times h\left(\frac{\sigma_s}{\beta^*}\right) \qquad (2)$$

We want to have a large charge per bunch, high collision frequency and small spot size!

Cooling:

reduces beam phase space volume, emittance and momentum spread in order to improve beam quality.

Coherent electron Cooling (CeC)

CeC scheme is based on electrostatic interactions between electrons and hadrons that are amplified either in a high-gain FEL or by other means.

The electron and hadron beams co-propagate in a vacuum along a straight line in the modulator and kicker with the same velocity:

$$\gamma = \frac{E_e}{m_e c^2} = \frac{E_h}{m_h c^2} \tag{3}$$

Coherent electron Cooling (CeC): Kicker

- When the hadron and electron beams are recombined, hadrons are exposed to the longitudinal electric field
- With a proper delay section, a hadron with central energy E_0 arrives at the kicker on top of the electron density peak—zero electric field
- Hadrons with higher energy are decelerated, and ones with lower energy are pulled forward. $E < E_0$

Parameter	Value						
Gun energy, MeV	1.25						
Beam charge, nC	1-5	Hadrons MO	odulator	Disp	ersion section (for hadro	ns)	
Final beam energy, MeV	14.6		l_I	High	gain FEL (for electrons)		1
Normalized emittance, mm-mrad	$<\!\!5$		-	-		-	
Energy spread	10^{-3}	Electrons			*****		
Pulse repetition rate, kHz	78						
							1.25 MV
CeC "kicker" CeC FEL at	nplifier	CeC modulator				D 1	SRF photo-gun
4 quads 3 helical w	igglers	4 quads	Dog-leg:	13.1 MeV	Low energy transport	Bunching	and cathode
5 Manual States and S	a in the second s	_ اور وروغ قار _	3 dipoles	SRF linac	beam-line	KF cavilles	manipulation
			3 quads	d	with 5 solenoids	6.6	system
≅ Common section >	with RH		المتعكاة	واجراني التتنيني	which much which		
High power beam dump		Low power				<u> 1</u>	
1 dipole, 2 quads		beam dump		- r		,,	

- e^- beam is generated by 113 MHz SRF gun with CsK₂Sb photocathode driven by a 532 nm laser
- Two 500 MHz copper cavities provide energy chirp and beam is compressed to desired peak current.
- After the compression beam is accelerated by a 704 MHz SRF cavity and merged into CeC PoP structure with three helical undulators.

August 1, 2019

9 / 97

- e^- beam is generated by 113 MHz SRF gun with CsK₂Sb photocathode driven by a 532 nm laser
- Two 500 MHz copper cavities provide energy chirp and beam is compressed to desired peak current.
- After the compression beam is accelerated by a 704 MHz SRF cavity and merged into CeC PoP structure with three helical undulators.

- e^- beam is generated by 113 MHz SRF gun with CsK₂Sb photocathode driven by a 532 nm laser
- Two 500 MHz copper cavities provide energy chirp and beam is compressed to desired peak current.
- After the compression beam is accelerated by a 704 MHz SRF cavity and merged into CeC PoP structure with three helical undulators.

- e^- beam is generated by 113 MHz SRF gun with CsK₂Sb photocathode driven by a 532 nm laser
- Two 500 MHz copper cavities provide energy chirp and beam is compressed to desired peak current.
- After the compression beam is accelerated by a 704 MHz SRF cavity and merged into CeC PoP structure with three helical undulators.

SRF photoinjectors—challenging, but rewarding creations

Pros:

- \bullet Good vacuum inside Nb cavity at 2K/4K
- Relatively high accelerating gradients
- CW operation

Cons/Questions:

- Are high-QE cathodes compatible with SRF?
- Can high-QE cathodes survive in an SRF cavity?
- How to keep cathodes at room temperature without causing multipacting (MP)?
- How to get to operational voltage without causing MP and killing cathode?
- Dark current?

It is expensive and challenging—hence, there are very few operational SRF guns!

Overview of existing SRF photoinjectors

Parameter	CeC PoP	FZD^1	HZB^2	NPS^3	UW^4
Cavity type	QWR*	Elliptical	Elliptical	QWR	QWR
Number of cells	1	3.5	1.4	1	1
RF frequency, MHz	113	1300	1300	500	200
LiHe Temperature, K	4	2	2	4	4
Beam energy, MeV	1.25 - 1.5	3.3	1.8	0.47	1.1
Charge per bunch, nC	10.7	0.3	0.006	0.078	0.1
Beam current, μA	150	18	0.005	< 0.0001	< 0.1
Dark current, nA	<1	120	-	<20,000	< 0.001
$E_{cath}, MV/m$	10-20	5	7	6.5	12
Photocathode	CsK_2Sb	Cs_2Te	Pb	Ni	Cu

*QWR—Quarter Wave Resonator

- A. Arnold et al. "A high-brightness SRF photoelectron injector for FEL light sources". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 593.1 (2008), pp. 57–62.
- [2] M. Schmeißer et al. "Results from beam commissioning of an SRF plug-gun cavity photoinjector". In: (2013).
- [3] J.R. Harris et al. "Design and operation of a superconducting quarter-wave electron gun". In: *Physical Review Special Topics-Accelerators and Beams* 14.5 (2011), p. 053501.
- [4] J. Bisognano et al. "Wisconsin SRF Electron Gun Commissioning". In: Proc. NAPAC'13 (2013), pp. 622–624.

CeC PoP SRF gun with warm CsK_2Sb photocathode

- Quarter-wave cavity.
- 4 K operating temperature.
- 4 kW CW solid state power amplifier.
- CsK₂Sb cathode is at room temperature.
- Up to three cathodes can be stored in garage for quick exchange.
- Design gradient 22.5 MV/m.

113 MHz SRF Photo-Injector: Performance

2

2

2
MP Simulations: Affected Areas & Influence of B-Field

Irina Petrushina (SBU)

August 1, 2019 23

Multipacting Well Studied and Understood Now

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 082001 (2018)

Mitigation of multipacting in 113 MHz superconducting rf photoinjector

I. Petrushina,^{1,2,*} V. N. Litvinenko,^{1,2} I. Pinayev,² K. Smith,² G. Narayan,² and F. Severino² ¹Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA ²Collider-Accelerator Department, Brookbaren National Laboratory, Upion, New York 11973, USA

(Received 28 February 2018; published 13 August 2018)

Example of Cavity Turn On Attempt with Strong MP

- Lengthen period between attempts from $\sim 20 \text{ min to } \sim 40 \text{ min } \Rightarrow 5^{th}$ attempt = successful turn on.
- Cathode QE not impacted by turn on attempts as MP related vacuum activity is kept minimal.

- Four repeated attempts to turn on result in getting stuck at 22 kV MP barrier.
- Attempts last only 20 ms, controlled by LLRF MP trap code.
- Prevents significant energy deposition ⇒ vacuum activity which would kill cathode QE.

- Traditional simulations tools (PARMELA, GPT, ASTRA, BMAD, IMPACT-T) have a difficulty to properly simulate beam dynamics inside the SRF gun.
- There is no problem to perform simulations outside of the gun, but the challenge is in grasping the details of the environment in the cathode vicinity.
- Goal: utilize Particle In Cell (PIC) codes dedicated to such problems, and use the resulting distribution in the start-to-end simulations.

Particle In Cell (PIC): algorithm & the PIC codes

The equations of motion used for the simulations:

$$\frac{d\vec{r}}{dt} = \frac{\vec{p}}{m\gamma}; \ \frac{d\vec{p}}{dt} = q\left(\vec{E} + \frac{\vec{p}}{m\gamma} \times \vec{B}\right).$$

Parameter	CST PS	Pic3P	GPT	IMPACT-T	
Specifics of the algorithm					
Equations solved	Maxwell	Maxwell	Poisson	Poisson	
Wakefileds	✓	\checkmark	×	×	
Space charge	√	\checkmark	\checkmark	√	
Retardation effects	✓	√	×	×	
Image charge	Real geometry	Real geometry	Flat wall	Flat wall	
Simulation setup					
Field distribution	CST MWS	Omega3P	SUPERFISH (map)	SUPERFISH (E_z)	
Transverse particle distri-	Area/Circular		Uniform	Uniform	
bution					
Longitudinal particle dis-	Truncated Gaussian	Uniform	Uniform	Uniform	
tribution					
Performance					
Computational resources	Intel Core i7 (8 CPU)	NERSC	Intel Core i7 (8 CPU)	Intel Core i7 (8 CPU)	
Duration	1 week	1 day	1 day	5 hours	

Irina Petrushina (SBU)

Comparison with the experiment

August 1, 2019 28 / 97

Emittance, what is it?

Emittance, ε :

measure of the area A occupied by a beam in phase space.

Normalized emittance, ε_n :

$$\varepsilon_n = \varepsilon \gamma \beta,$$

with relativistic parameters β and γ defined by the energy of the beam.

Irina Petrushina (SBU)

Slice emittance & Emittance compensation

August 1, 2019 31 / 97

August 1, 2019 32 /

August 1, 2019

August 1, 2019

August 1, 2019 36

Emittance measurements

For a 100 pC e-beam we can achieve a core slice emittance as low as 0.15 mm-mrad

achieved for 600 pC was 0.57 mm-mrad with core slice emittance of 0.35 mm-mrad.

Emittance Measurements

- We have demonstrated the record parameters for the SRF CW gun both in charge per bunch and transverse emittance.
- Photocathode at room temperature have high QE.
- Low frequency of the gun allows to generate electron beam close to conditions in a DC gun and fully utilize available field gradient.
- Good vacuum inside SRF gun provides long lifetime for the cathode.
- Multipacting is no longer a challenge.

Achieved parameters of the e^- beam.

Parameter	Design	Status	Comment
Species in RHIC (GeV/u)	$Au^{+79} 40$	Au^{+79} 26.5	to match e-beam
Electron energy (MeV)	21.95	14.56	linac quench
Charge per e-bunch (nC)	0.5-5	0.1-10.7	\checkmark
Peak current (A)	100	50-100	\checkmark
Bunch duration (psec)	10-50	12	\checkmark
Normalized emittance (μm)	<5	3-5	\checkmark
Energy spread, RMS $(\%)$	0.1	0.1	\checkmark
FEL wavelength (μm)	13	31	new IR diagnostics
Repetition rate (kHz)	78.18	78.18	\checkmark
CW beam (μA)	<400	150	\checkmark

- Establish the required transverse overlap of the electron and ion beams.
- Synchronize the electron and ion beams to achieve longitudinal overlap.
- Onfirm the interaction of the beams in the modulator by measuring the FEL power.
- Adjust the energy of the electron beam to match the ion beam energy based on the FEL signal.
- Establish interaction between the bunches and observe the ion beam evolution in time to test the CeC.

August 1, 2019

Confirm interaction of the beams in the modulator

Indicator of the ion and electron beam interactions in the modulator section is a significant increase in the FEL power.

Confirm interaction of the beams in the modulator

Indicator of the ion and electron beam interactions in the modulator section is a significant increase in the FEL power.

Possible reasons to investigate

- Energy difference between the ion and electron beams was larger than 3%.
- ② Transverse overlap between the bunches was reduced and therefore was insufficient for the interaction.
- FEL was operating in saturation.
- High initial noise level in the electron beam was present.

August 1, 2019

 Energy difference between the ion and electron beams was larger than 3%.

The measurements of the energy were repeated independently:

- Energy of the electron beam was reported as requested for the experiment with a ±1% relative error;
- Energy measurement of the ion beam in RHIC was performed with a $\pm 0.1\%$ accuracy;
- The energy difference between the beams could not be larger than ±1%;
- The ion imprint experiment was performed in a wide $(\pm 2.5\%)$ range of energies.

- Energy difference between the ion and electron beams was larger than 3%.
- ② Transverse overlap between the bunches was reduced and therefore was insufficient for the interaction.
- FEL was operating in saturation.
- High initial noise level in the electron beam was present.

Possible reasons to investigate: slice emittance

2 Transverse overlap between the bunches was reduced and therefore was insufficient for the interaction.

- Operate the 704 MHz cavity $\sim 15^{\circ}$ off-crest;
- Propagate the beam with the introduced energy spread through the main dipole;
- Observe the desired longitudinal beam profile.

To measure the slice emittance, utilize the quadrupole located at the point of zero dispersion, and performe a quadrupole scan for various phases of the linac.

Possible reasons to investigate: slice emittance

- For every quadrupole setting, record the corresponding beam profile.
- Slice all of the profiles.
- For each slice plot square of the RMS beam size as a function of the quadrupole strength.
- Fit the data to calculate the emittance.

The slice emittance in the central part of the beam doesn't show any variations which could have led to a reduction of the ion imprint.

- Energy difference between the ion and electron beams was larger than 3%.
- Transverse overlap between the bunches was reduced and therefore
 was insufficient for the interaction.
- FEL was operating in saturation.
- High initial noise level in the electron beam was present.

- Energy difference between the ion and electron beams was larger than 3%.
- Transverse overlap between the bunches was reduced and therefore
 was insufficient for the interaction.
- **6** FEL was operating in saturation.
- High initial noise level in the electron beam was present.

- Energy difference between the ion and electron beams was larger than 3%.
- Transverse overlap between the bunches was reduced and therefore was insufficient for the interaction.
- **§** FEL was operating in saturation.
- High initial noise level in the electron beam was present:
 - Modulation in e-beam induced by structures in the drive laser pulse.
 - Longitudinal instability driven by wake fields induced by components of vacuum chambers and RF cavities
 - Instability in dogleg driven by coherent synchrotron radiation in dogleg.

- Energy difference between the ion and electron beams was larger than 3%.
- Transverse overlap between the bunches was reduced and therefore was insufficient for the interaction.
- **§** FEL was operating in saturation.
- High initial noise level in the electron beam was present:
 - Modulation in e-beam induced by structures in the drive laser pulse.
 - Longitudinal instability driven by wake fields induced by components of vacuum chambers and RF cavities.
 - Instability in dogleg driven by coherent synchrotron radiation in dogleg.

Wakefields

- The simulations showed a good agreement between the two codes.
- Wake fields were calculated for every element of the CeC beam line.
- The highest amplitude of the wake field was observed at the transition between the two bunching cavities.

IMPACT-T simulations performed by Dr. Yichao Jing showed that introduction of the wake fields into the simulation didn't result in a significant change of the beam dynamics in the system.

RMS beam size in the LEBT section with and without wake fields.

Longitudinal phase space at the exit of the 5-cell cavity.

- Energy difference between the ion and electron beams was larger than 3%.
- Transverse overlap between the bunches was reduced and therefore was insufficient for the interaction.
- **§** FEL was operating in saturation.
- High initial noise level in the electron beam was present:
 - Modulation in e-beam induced by structures in the drive laser pulse.
 - Longitudinal instability driven by wake fields induced by components of vacuum chambers and RF cavities.
 - Instability in dogleg driven by coherent synchrotron radiation in dogleg.

Possible reasons to investigate

- Energy difference between the ion and electron beams was larger than 3%.
- Transverse overlap between the bunches was reduced and therefore was insufficient for the interaction.
- **§** FEL was operating in saturation.
- High initial noise level in the electron beam was present:
 - Modulation in e-beam induced by structures in the drive laser pulse.
 - Longitudinal instability driven by wake fields induced by components of vacuum chambers and RF cavities.
 - Instability in dogleg driven by coherent synchrotron radiation in dogleg.

First observations of PCI

Time profiles showing the dependence of the time resolution on the linac voltage.

Dependence of the dipole radiation on focusing by LEBT 5 solenoid: 7800 bunches, $0.6~{\rm nC/bunch}$:

August 1, 2019

57 / 97

Irina Petrushina (SBU)

PCI in an uncompressed beam

- Time profiles of 1.75 MeV electron bunches with charge per bunch from 0.45 nC to 0.7 nC were measured.
- Compared the spectra of measured bunch density modulation and PCI spectrum simulated by Dr. Jun Ma with SPACE.
Plasma-Cascade Instability (PCI)

$$n_0(s) = \frac{I}{ev} \frac{1}{\pi a^2(s)}$$

Cold beam model:

$$n(s,t) = n_0(s) \left(1 + \tilde{\eta}(s,t)\right)$$
$$\frac{\partial n}{\partial t} + \nabla \cdot (n\vec{v}) = 0$$

2

2

2

12

PCI supression

Dr. Yichao Jing has shown through the IMPACT-T simulations that the PCI can be suppressed by the choice of lattice.

During the Run 2019 we were able to demonstrate the ability of having a quite beam.

PCI applications \rightarrow ACeC

- Mechanical design of the new CeC system is completed.
- New laser system is procured and commissioned.
- All new vacuum chambers with beam diagnostics are built and installed.
- All solenoids are designed, manufactured, delivered and underwent magnetic measurements.
- Assembly of the ACeC can be completed during this year.

- Accelerator delivered the beam with parameters suitable for the CeC PoP experiment:
 - $\bullet\,$ Electron normalized emittance as low as 0.35 mm-mrad was measured
- We were unable to demonstrate the imprint of the hadrons on the electron beam due to the discovered Plasma Cascade Instability
- PCI was experimentally confirmed in the dedicated studies and methods for it suppression were developed
- The PCI will be utilized for the advanced CeC system

- Vladimir N. Litvinenko and Yaroslav S. Derbenev, Coherent Electron Cooling, Physicsl Review Letters, March 2009;
- V.N. Litvinenko et.al., Coherent Electron Cooling Demonstration Experiment, IPAC'11, San Sebastian, Spain, 2011;
- S. Belomestnykh et.al., SRF and RF systems for CeC PoP experiment, NAPAC'13 Pasadena, CA, 2013;
- I. Pinayev et.al., First results of the SRF gun test for CeC PoP, IPAC'16, Busan, Korea, 2016;
- I. Pinayev et.al., Commissioning of the CeC PoP accelerator, NAPAC'16, Chicago, IL, 2016;
- S. Belomestnykh et.al., Commissioning of the 112 MHz SRF gun, SRF2015, Canada, 2015;
- I. Pinayev et.al., Performance of CeC PoP Gun During Commissioning, NAPAC'16, Chicago, IL, 2016;

August 1, 2019

63 / 97

- H. Padamsee, RF Superconductivity, 2009;
- T.P. Wangler, RF Linear Accelerators, 2008.

IR Diagnostics during Run19

- Utilized high-sensitivity CCD camera for the dogleg profile monitor
- YAG was removed from low-power dump profile monitor. Viewport was replaced with CVD diamond window. IR detector was installed. Mesh was installed to suppress THz radiation.

1" CVD diamond window covered with 1.4 mm x 1.4 mm metal mesh to suppress GHz radiation

PCI supression: Run 2019

Baseline (shot noise level) measurements

The base line was measured for modestly (4-fold) compressed beam with 1.5 and 0.3 nC charges per bunch in relaxed LEBT lattice. Averaged over 4 long scans the lock-in amplifier MDM signal was 105 V/C (24 µW/A) with RMS error of 15 V/C (3 µW/A) This value is at 40% level of synchrotron radiation that reaches the Cu mirror

LEBT Optimization

As a result of optimization we were able to achieve the FIR signal only factor two above shot noise level. The optimized set-up has rather flat response of the noise on the variation of the solenoid current leaving sufficient headroom for optimizing other beam parameters.

- Thorough investigation of multipacting in the 113 MHz photoinjector through the simulations and experiment.
- **2** Comprehensive study of beam dynamics in the photoinjector.
- **③** Beam dynamics simulations in the CeC accelerator.
- Analysis of wake fields in the CeC beamline.
- Participation in the CeC PoP commissioning.

Linac phase scan

Back-Up: Beam Parameters for Self-Consistent Simulation

Parameters of the beam.

Parameter	Value
Total Charge, nC	0.5
Initial Velocity, β_z	0.003
Type of radial Distribution	Uniform
Radius, mm	1.5
Type of Longitudinal Distribution	Flat Top
Duration of the flat top, ns	0.5
Rise/Drop time, ns	0.005

Back-Up: Summary of the SRF guns

		Elliptical Cavity + NC cathodes		DC-SC	Quarter Wave SRF guns			Elliptical Cavity + SC cathodes		
Parameter	Units	FZD	BNL/AES	HZB BerlinPro	PKU gun	NPS 500MHz	WiFEL 200MHz	BNL 112MHz	Pb/Nb hybrid gun	HZB HoBiCat
Beam kinetic energy, Vc	MeV	9.4	2	≤ 3.5	5	1.2	4.0	2.7 (2)	~5	≤ 3.5
Max bunch charge, Qmax	nC	1/0.077	5 / 0.7	0.077	0.1	1	0.2	5 ⁽²⁾	1	0.015
Norm. trans. emittance, Int	mm mrad	2.5/1	5 / 1.4	1	1.2	4	0.9	3 (2)	1	1
Average beam current, Ib	mA	1/0.5	50 / 500	100	1-5	1	1.0	-	<1 rather 0.1	0.0045
Peak current, Ipk	A	67 / 20	166 / 70 (10)	4	20	50	50	-	50	6
Photocathode		Cs ₂ Te	CsK ₂ Sb	CsK ₂ Sb	Cs ₂ Te	tbd	Cs ₂ Te	tbd	Pb	Pb
Quantum efficiency, Q.E.	%	1	18	10	1-5	tbd	1	tbd	0.0017	5x10 ⁻²
Driving laser wavelength, I	nm	263	355	527	266	tbd	266	tbd	213	260
Pulse duration (FWHM)	ps	15/4	30 / 20 (10)	≤ 20	5	10 - 40	0.1	270 (2)	<20	2 to 3
Bunch repetition rate, frep	MHz	0.5/13	10 / 704	≤ 1300	81.25	$10^{-5} - 100$	5	9.4 ⁽²⁾	<1 rather 0.1	0.030
Gun frequency, f ₀	MHz	1300	703.75	1300	1300	500	200	112	1300	1300
Operating temperature	K	2	2	2	2	4.2	4.2	4.2	2	2
Dissipated power, Pdiss	w	26	4.2	12.1 ⁽¹⁾	-	8.6	42	16.6	143	12.1 ⁽¹⁾
at the intrinsic Q ₀ of		@ 1x10 ¹⁰	@ 1x10 ¹⁰	@ 1x10 ¹⁰		@ 9.5x10 ⁸	@ 3.2x10 ⁹	@ 3.5x10 ⁹	@ 5x10 ⁹	@ 1x10 ¹⁰
Active cavity length, lactiv	cm	50	9.5	17.1	41.7	8	19	20 (2)	18.4	17.1
R _{Shunt} /Q ₀ , r	Ω	334	96	189 ⁽⁴⁾ , 0=1	418, 0=1	185, 0=1	147.8, 0=1	126.8	170, 0=1	189 ⁴ , I=1
(R _{shunt} from acc. def.)			95.2"	101.4"		176.3"	118.8"	126.6	35.2"	101.4"
Transit time factor, V _c /V ₀	TTF	0.715	0.888 (3)	0.54 (1)	0.74 (6)	0.94	0.98 (I=1)	0.99	-	0.54 (1)
Stored energy at Epk, U	J	32.4	8.4/9.5	14.8 ⁽¹⁾	-	2.6	107.2	81.4"	87	14.8 ⁽¹⁾
Electric cathode field Ecath	MV/m	30	20	≥ 10	~5 (6)	25	45	19.7	50 - 60	≥ 10
Peak electric field, Epk	MV/m	50	35.7	≤ 50	31.8	44	59	51.3	50 - 60	≤ 50
Peak magnetic flux, Bpk	mT	110	74	116	74.5	69.1	90.7	97.8	104 - 125	116
Peak magnetic field, H _{pk}	A/m	87535	59000	≤ 92600	59285	55000	72165	78000 (2)	(83 - 99)x10 ³	≤ 92600
Persons that provided the data		A. Arnold ⁽¹⁾	I. Ben-Zvi (2)	T. Kamps ⁽⁴⁾	J. Hao ⁽⁵⁾	J.W. Lewellen ⁽⁷⁾	B. Legg ⁽⁹⁾	A. Burril (10)	J. Sekutowicz ⁽¹¹⁾	T. Kamps (4)
via private communication			M. Cole (3)	A. Arnold ⁽¹⁾	F. Wang ⁽⁶⁾	T.L. Grimm ⁽⁸⁾		I. Ben-Zvi ⁽²⁾		A. Arnold ⁽¹⁾

Existing cooling methods are not sufficient:

- Electrons and positrons have natural strong cooling mechanism: Synchrotron Radiation (~ milliseconds)
- Synchrotron Radiation will not help to cool hadrons at the currently available energies
- Main limitation of electron cooling is its rapidly falling efficiency with the increase of the beam energy $\tau \sim \gamma^{7/2}$
- Stochastic cooling (for a fixed bandwidth) is limited by the fact that its cooling time directly proportional to linear density of the particles and modern proton beams are simply too dense.

Cooling rate in hours for various cooling methods.

Machine	Energy, GeV/u	Stochastic Cooling	Synchrotron radiation	Electron cooling	Coherent electron Cooling
RHIC - CeC PoP (Au)	26	-	-	~ 1	10 sec - local, 30 min - bunch
eRHIC (p)	325	~ 100	∞	~ 30	~ 0.1
LHC (p)	7000	~ 1000	13(energy)/26(transverse)	∞	~ 1

Coherent electron Cooling (CeC) and eRHIC

High energy luminosity Electron-Ion Collider requires strong hadron cooling: < 1 min cooling time of 250 GeV protons

If CeC is successful and fully operational, eRHIC Linac/Ring configuration could reach $2 \cdot 10^{33}$ luminosity with 5 mA polarized electron current.

Coherent electron Cooling (CeC): Modulator

- Each individual hadron attracts surrounding electrons and generates density modulation
- In about a quarter of the plasme period, each hadron is surrounded by a cloud of electrons

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{\gamma m_e}} \tag{4}$$

- In the co-moving frame, the longitudinal velocity spread is much smaller than that in the transverse direction
- Electron cloud is shaped as a very flat pancake-like shape.

Coherent electron Cooling (CeC): Amplifier

• An FEL is a resonant instability at the wavelength of:

$$\lambda_o = \lambda_w \frac{1 + \langle \vec{a}_w^2 \rangle}{2\gamma^2}, \ \vec{a}_w = \frac{e\vec{A}_w}{mc^2}$$
(5)

- If the longitudinal extent of an induced perturbation is considerably shorter than FEL wavelength, it will be amplified.
- A periodic density modulation generates a periodic longitudinal field.

Fundamental Power Coupler (FPC)/ Frequency Tuner

- Fundamental RF power coupling and fine frequency tuning is accomplished via a coaxial beam pipe and the beam exit port.
- With the travel of ± 2 cm, the tuning range is ~6 kHz. Rough tuning is accomplished manually via mechanical linkages outside the cryomodule.
- The center conductor and RF windows are water-cooled. The outer conductor copper coated bellows are air-cooled.
- The center conductor is gold-plated to reduce heat radiated into the SRF cavity.

Cathode Stalk Design

- The cathode stalk is a hollow center conductor of the coaxial line formed by the stalk and the cavity.
- The stalk is shorted at one end and is approximately half wavelength long.
- A quarter-wave step from the short creates an impedance transformer \rightarrow reduces RF losses in the stalk from ~65 W to ~25 W.
 The gold plating reduces radiation heat load from the stalk.

Cathode Recess

Cathode Recess

Electrical Axis of the Gun

In order to determine the electrical axis of the gun:

- change the beam rigidity $\frac{p}{e} = B\rho$ by scanning the voltage of the gun
- measure the position of the beam center at the first profile monitor

The y-intercept gives the direction of the gun axis for an infinitely rigid beam: horizontal angle of -11.1 ± 0.1 mrad, and vertical angle of $+1.6\pm0.2$ mrad.

Multipacting Simulations

CST Particle Studio

ACE3P (Track3P)

$$N_e(t) = N_0 e^{\alpha t}$$

 $EC = \delta_1 \times \delta_2 \times \dots \times \delta_n$

Multipacting Simulations

CST Particle Studio

ACE3P (Track3P)

$$N_e(t) = N_0 e^{\alpha t}$$

 $EC = \delta_1 \times \delta_2 \times \ldots \times \delta_n$

Simulation results: not so consistent.

Beam energy vs. z in the gun.

RMS beam size evolution in the gun.

Parameter	CST PS	Pic3P	GPT	IMPACT-T			
Specifics of the algorithm							
Equations solved	Maxwell	Maxwell	Poisson	Poisson			
Wakefileds	\checkmark	\checkmark	×	×			
Space charge	\checkmark	\checkmark	\checkmark	\checkmark			
Retardation effects	\checkmark	\checkmark	×	×			
Image charge	Real geometry	Real geometry	Flat wall	Flat wall			

XY distribution at the gun exit

August 1, 2019 83 / 97

XY distribution at the gun exit

XY distribution at the gun exit

XZ distribution at the gun exit

Emittance compensation

Goal: optimize the normalized RMS emittance at YAG 1 by appropriate choice of the gun and LEBT 1 soloenoids.

87 / 97

Emittance compensation

Goal: optimize the normalized RMS emittance at YAG 1 by appropriate choice of the gun

Parameter	Value
Radius of the laser spot, mm	0.25-2.5
Pulse length, ps	400
Bunch charge, pc	10-600
Gun Voltage, MV	1.25
Cathode recess, mm	0-12

113 MHz Photoinjector: excellent performance!

Irina Petrushina (SBU)

August 1, 2019 89 / 97

Emittance study: 100 pC

The simulation results of the LEBT scan provide a projected normalized RMS emittance of 0.23 mm-mrad, while the slice emittance demonstrated a uniform core with the slice emittance of about 0.13 mm-mrad.

Emittance study: 600 pC

Emittance study: 100 pC with increased spot size

20% increase of the spot size caused an increase in the projected emittance by 32% (0.303 mm-mrad) with the slice emittance of about 0.15 mm-mrad on average.

Emittance study: 100 pC

This data set was obtained for a 0.4 ns 100 pC electron beam at 1.25 MV gun voltage, and 1.34 mm diameter of the laser spot at the cathode.

Irina Petrushina (SBU)

August 1, 2019 93 / 97

Wakefields

- The beam loses part of its energy to establish EM—wake—fields that remain after the passage of the beam.
- Theses wake fields affect trailing particles of the same beam or the following beam.

Parameter	ABCI	ECHO 3D
Geometry	Axially symmetric	Full 3D
Beam Duration (ps)	5	5
Simulation Duration (ps)	500	500
Transverse overlap of the electron and ion beams

- Utilize two quadrupole magnets at the beginning and the end of the common section: the first quadrupole of the modulator section and the last quadrupole of the kicker section.
- When passing through the center of a quadrupole, the orbit of a charged particle beam doesn't change.
- Varying the transverse position of a beam, and then observing the effect of the varied field in the quadrupole, find the quadrupole center.
- Performed for both, the electron and ion beams at the beginning and the end of the common section.

Longitudinal overlap of the electron and ion beams

- Observe the signal from the BPM in the common section.
- By adjusting the phase shift of the CeC RF system, align the signal from the electron bunch to the center of the ion bunch.

- Thorough investigation of multipacting in the 113 NHz photoinjector through the simulations and experiment.
- **②** Comprehensive study of beam dynamics in the photoinjector.
- **③** Beam dynamics simulations in the CeC accelerator.
- **(1)** Analysis of wake fields in the CeC beamline.
- Participation in the CeC PoP commissioning.