Navid Vafaei-Najafabadi

Investigation of Plasma-Based Acceleration at Stony Brook University

Stony Brook Understanding the Physics Requires Complex Simulation Tools (OSIRIS) University and Supercomputers (CORI@NERSC and SEAWULF@SBU)

osiris framework

Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code Visualization and Data Analysis Infrastructure Developed by the osiris.consortium \Rightarrow UCLA + IST

UCLA

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt **Frank Tsung**: tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

code features

- Scalability to ~ 1.6 M cores
- SIMD hardware optimized
- Parallel I/O
- Dynamic Load Balancing
- QED module
- Particle merging
- GPGPU support
- Xeon Phi support

Fields Within the "Blowout" are Ideal for Accelerating and Focusing

6

6

0

-1

8

8

Transverse Force

"Blowout regime" occurs as n_e→0

Nonlinear accelerating force E normalized to 50 GeV/m

Uniform transversely

Linear Focusing Force, similar to quadrupole magnets in a conventional accelerator

Uniform Longitudinally

SLAC National Accelerator Laboratory

- Final Focus Test Beam (FFTB, 2002-2007)
- Facility for Advanced Accelerator Experimental Tests (FACET, 2012-2016)
- FACET II scheduled to start operation later this year.
- Used the SLAC linac provide compressed, 3 nC, 10-40 GeV electron or positron beam to at 1-10 Hz
- Meter-scale pre-ionized lithium plasma source with typical density ~5x10¹⁶ cm⁻³

Status of Plasma Accelerator Results for e- at FACET

HIGH EFFICIENCY ACCELERATION OF NARROW δγ/γ e- BUNCH

- 1) Scaling of energy gain up to 40+GeV with PA length up-to a meter,
- 2) Narrow energy spread `2-5%, high energy transfer efficiency ~ 20%
- 3) Up to 9 GeV energy gain demonstrated.
- I. Blumenfeld et al Nature
 2007, P. Muggli et al. NJP 2010
 ,M. Litos et al Nature 2014, M.
 Litos et al PPCF 2016

Courtesy of Chan Joshi, UCLA

PWFA Research Priorities at FACET-II Stage 1 Funded. Stage 2 & 3 will Fully Exploit the Potential of FACET-II

Emittance Preservation with Efficient Acceleration FY19-21

- High-gradient high-efficiency (instantaneous) acceleration has been demonstrated @ FACET
- Full pump-depletion and Emittance preservation at µm level planned as first experiment

High Brightness Beam Generation & Characterization FY20-22

- 10's nm emittance preservation is necessary for collider apps
- Ultra-high brightness plasma injectors may lead to first apps

Stage 1

SLAC

Simultaneous Deliver of Electrons & Positrons FY22-25

Positron Acceleration on Electron Beam Driven Wakefields

Gradual introduction of capabilities works well with level of demand for FACET-II

Hogan - 2018 FACET-II PAC, October 9-12, 2018

Positron Acceleration FY21-24

Only high-current positron capability in the world for PWFA research will be enabled by Phase II

Accelerator Test Facility, BNL

Long Term Research Vision at ATF

CO₂ Laser power upgrade will enable experimentation in the ideal "blowout" regime

Combination of this high power laser and a linac-produced electron beam makes ATF a <u>unique</u> facility in the US

Future upgrades allows for the study the properties of the fields in the blowout regime as well as the physics of coupling the electron beam to the plasma wake

CO₂ Laser Pulse and H₂ Plasma Chosen for External Injection of ATF Beam Into Wake

Polarization direction

	Duration	Power	λ ₀	Spot size	Energy	Intensity	a ₀	Rayleigh length	Critical power	Critical Density	Depletion length	Dephasing length
Laser	0.2 ps	20 TW	9 µm	80 µm	4.3 J	3.2x10 ¹⁸ W/cm ⁻²	14	0.014 cm	0.06 TW	1.4x10 ¹⁹ cm ⁻³	1.4 cm	1.2 cm

	Charge	FWHM length	σ _z	σ _r	n _p /n ₀	Energy	Emittance	Particles per cell
e ⁻ beam	0.16 nC	30 fs	3.8 µm	11 µm	2.3	60 MeV	7.5 µm	2x2

	Simulation box - Longitudinal			Si			
	Size	Cells per λ_0	Cells per c/ ω_p	Size	Cells p. spot size	Cells per c/ω _p	Ionization
Simulation box	303 µm	120	288	475 μm	80	296	Active - ADK

Stony Brook Blowout Regime of ~ 200 µm Support Accelerating University Field of 27 GV/m

Towards Sub-ps CO₂ Pulses at ATF

Recent CPA CO₂ laser development

 $\lambda = 9.2 \,\mu m$

The available laser pulse is currently much longer than the plasma wavelength

Our experiments are in a regime called self modulation, where the laser pulse is modified by the plasma wave

We are using laser and electron beam probe to characterize this plasma wave in preparation for our ultimate goal: the external injection of ATF beam into a plasma wakefield in blowout regime

Three Interaction Regions Reflect the Rich Plasma Physics of the Interaction

Radiation and Electron beams generated in this interaction as well as probing the structures with e-beam are the subject of near-term studies

Collaboration of SBU & BNL

Established November 19, 2008

Educating the Next Generation of Accelerator Physicists and Engineers

The goals of CASE are:

- To train scientists and engineers with the aim of advancing the field of accelerator science;
- To develop an unique educational program that will provide broad access to research accelerators;
- To expand interdisciplinary research and education program utilizing accelerators.

The Accelerator Base

- BNL has the largest assembly of advanced accelerators in the U.S. engaged in a broad spectrum of sciences;
- An Accelerator Test Facility has a national user program in accelerator research;
- Many outstanding BNL scientists already affiliated with and teaching at SBU.

http://case.physics.stonybrook.edu/index.php/Main_Page

Conclusions

- Plasma wakefield accelerators use particle and laser beams to create high accelerating field in blowout regime in plasma
- Stony Brook University is an active collaborator in plasma wakefield research at National User Facilities, in particular FACET and ATF.
 - FACET: Experiments at FACET aim to investigate energy doubling and quality preservation, novel methods of injection for producing high brightness electron beams and plasma acceleration of positrons
 - ATF at BNL: Experiments at ATF aim to demonstrate high quality injection of electron beams in a large plasma wakefield driven by a CO₂ mid-IR laser
 - Laser upgrades at ATF pave the path for enabling the blowout regime of experimentation with a mid-IR laser
 - Meanwhile experiments are ongoing to investigate the interaction of long-pulse laser with plasma

The End

Electron Beam Probe will Encode the Density Modulations in ATF Experiments

Stony Brook Status of PWFA Results for e+ at FACET

A New Regime for splitting of a positron bunch and energy transfer from the front to the split part of the bunch. 4+ GeV energy gain with a 5% energy spread obtained. *S. Corde et al Nature 2015*

Positron propagation, wake excitation, acceleration and in a 30 cm hollow plasma channel *S. Gessner et al Nature Com 2016*,

Accurate mapping of transverse wakefields in a hollow plasma channel due to off-axis drive bunch propagation *C. Lindstrom et al PRL 2018*

Courtesy of Chan Joshi, UCLA

Stony Brook A Method for Injecting Accelerating Bunches: University Ionization Injection

Trapping Condition: $\Delta \bar{\Psi} \leq -1$

"Pinch" Feature

Ionization front identified on the moving dashed line

One-to-One Mapping Between Ionization and Injection Allows Bunch Shaping

By controlling the concentration of impurity in each pinching location we can control the final beam density profile

FACET Collaboration

N. Vafaei-Najafabadi

C.E. Clayton, K.A. Marsh, W. An, W. Lu, F. Tsung, W.B. Mori, C.Joshi

S. Corde, A. Doche

E. Adli, C. Lindtrom

J. Allen, C.I. Clarke, J.P. Delahaye, R.J. England, A.S. Fisher, J. Frederico, S. Gessner, S.Z. Green, N. Lipkowitz, G. White, J. Yocky, M.J. Hogan, V. Yakimenko

ATF AE-71 Collaboration

J.Yan, P. Japozzuto, P. Kaur, P. Kumar, L. Diana Amorim, R. Samulyak, V. N. Litvinenko and N. Vafaei-Najafabadi

I. V. Pogorelsky, M. Babzien, Y. Jing, K. Kusche, M. Polyanskiy, M. Fedurin, M. Palmer

J. Welch, R. Zgadzaj, M. Downer

W. B. Mori and C. Joshi

@ Stony Brook University, US

@ Brookhaven National Laboratory, US

@ University of Texas at Austin, US

@ University of California Los Angeles, US

AT AUSTIN

Acknowledging funding from DOE Grant No. 215125

CORI@NERSC facility, operated under Contract No. DE-AC02-05CH11231

The End