Beam-energy dependence of the azimuthal anisotropic flow from RHIC

Niseem Magdy Abdelwahab Abdelrahman
(For the STAR Collaboration)
University of Illinois at Chicago
niseemmm@gmail.com
Introduction

Ø Lattice QCD finds a smooth crossover at large T and $\mu_B \sim 0$ MeV

Ø Various models find a strong 1st-order phase transition at large μ_B
Introduction

QCD Phase Diagram

- Lattice QCD finds a smooth crossover at large T and $\mu_B \sim 0$ MeV

- Various models find a strong 1st-order phase transition at large μ_B

- Strong interest in the theoretical calculations which span a broad (T, μ_B) domain.

 ✓ Search for QCD critical point
 ✓ Search for signals of the 1-st order phase transition
 ✓ Search for turn-off of the QGP signatures
Introduction

QCD Phase Diagram
Step-by-step on the QCD Phase Diagram

Beam-Energy Scan (BES-I) at RHIC

<table>
<thead>
<tr>
<th>√s_{NN} (GeV)</th>
<th>Events (10^6)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>350</td>
<td>2010</td>
</tr>
<tr>
<td>62.4</td>
<td>67</td>
<td>2010</td>
</tr>
<tr>
<td>54.4</td>
<td>1300</td>
<td>2017</td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>2010</td>
</tr>
<tr>
<td>27</td>
<td>70</td>
<td>2011</td>
</tr>
<tr>
<td>19.6</td>
<td>36</td>
<td>2011</td>
</tr>
<tr>
<td>14.5</td>
<td>20</td>
<td>2014</td>
</tr>
<tr>
<td>11.5</td>
<td>12</td>
<td>2010</td>
</tr>
<tr>
<td>7.7</td>
<td>4</td>
<td>2010</td>
</tr>
</tbody>
</table>
Introduction

QCD Phase Diagram
Step-by-step on the QCD Phase Diagram

Beam-Energy Scan (BES-I) at RHIC

<table>
<thead>
<tr>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>Events (10^6)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>350</td>
<td>2010</td>
</tr>
<tr>
<td>62.4</td>
<td>67</td>
<td>2010</td>
</tr>
<tr>
<td>54.4</td>
<td>1300</td>
<td>2017</td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>2010</td>
</tr>
<tr>
<td>27</td>
<td>70</td>
<td>2011</td>
</tr>
<tr>
<td>19.6</td>
<td>36</td>
<td>2011</td>
</tr>
<tr>
<td>14.5</td>
<td>20</td>
<td>2014</td>
</tr>
<tr>
<td>11.5</td>
<td>12</td>
<td>2010</td>
</tr>
<tr>
<td>7.7</td>
<td>4</td>
<td>2010</td>
</tr>
</tbody>
</table>

Beam-Energy Scan (BES-II) at RHIC

<table>
<thead>
<tr>
<th>Collision Energy (GeV)</th>
<th>μ_B (MeV) in 0-5% central collisions</th>
<th>Fixed Target Energy (GeV)</th>
<th>Fixed Target μ_B (MeV)</th>
<th>Proposed Event Goals in BES-II</th>
<th>BES-I Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>420</td>
<td>3.0</td>
<td>721</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>9.1</td>
<td>370</td>
<td>3.2</td>
<td>699</td>
<td>160</td>
<td>N/A</td>
</tr>
<tr>
<td>11.5</td>
<td>315</td>
<td>3.5</td>
<td>666</td>
<td>230</td>
<td>12</td>
</tr>
<tr>
<td>14.5</td>
<td>260</td>
<td>3.9</td>
<td>633</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>19.6</td>
<td>205</td>
<td>4.5</td>
<td>589</td>
<td>400</td>
<td>36</td>
</tr>
</tbody>
</table>

μ_B (MeV) in 0-5% central collisions

Fixed Target Energy (GeV)

Fixed Target μ_B (MeV)

Proposed Event Goals in BES-II

BES-I Events
Anisotropic flow

Asymmetry in initial geometry → Final-state momentum anisotropy (flow)
Anisotropic flow

Asymmetry in initial geometry → Final-state momentum anisotropy (flow)

\[\varepsilon^+ \varepsilon^- \]

Introduction

\[\frac{dN}{d\varphi} = 1 + 2 \sum_{n}^{\infty} \nu_n \cos(\varphi - \Psi_n) \]

- The flow harmonic coefficients \((\nu_n) \) are influenced by eccentricities \((\varepsilon_n) \), fluctuations, speed of sound \((c_s(\mu_B, T)) \), and specific shear viscosity \(\eta_s(\mu_B, T) \)
Anisotropic flow

Asymmetry in initial geometry → Final-state momentum anisotropy (flow)

\[\varepsilon_+ - \varepsilon_- \]

Introduction

\[\frac{dN}{d\varphi} = 1 + 2 \sum_{n} v_n \cos(\varphi - \Psi_n) \]

- The flow harmonic coefficients \((v_n)\) are influenced by eccentricities \((\varepsilon_n)\), fluctuations, speed of sound \((c_s(\mu_B, T))\), and specific shear viscosity \(\frac{\eta}{\mathcal{S}}(\mu_B, T)\)

- Comprehensive set of flow measurements are important for:
 - Differentiate between initial-state models
 - Aid the extraction of \(\frac{\eta}{\mathcal{S}}(T, \mu_B)\)
Introduction

The Solenoidal Tracker At RHIC

Time Projection Chamber

- Tracking and identification of charged particles
- Full azimuthal coverage
- $|\eta|<1$ coverage
Azimuthal anisotropy measurements

Correlation function

Two-particle correlation function $C_r(\Delta \varphi = \varphi_a - \varphi_b)$,

$$C_r(\Delta \varphi) = \frac{dN}{d\Delta \varphi} \quad \text{and} \quad v_n^{ab} = \frac{\sum_{\Delta \varphi} C_r(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} C_r(\Delta \varphi)}$$

Flow

Non-flow
Azimuthal anisotropy measurements

Correlation function

Two-particle correlation function $C_\varphi(\Delta \varphi = \varphi_a - \varphi_b)$,

$$C_\varphi(\Delta \varphi) = \frac{dN}{d\Delta \varphi} \text{ and } v_n^{ab} = \frac{\sum_{\Delta \varphi} C_\varphi(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} C_\varphi(\Delta \varphi)}$$

$n > 1$

$\nu_n^{ab} = \nu_n^a \nu_n^b + \delta_{\text{short}}$

$n = 1$

$\nu_1^{ab} = \nu_1^a \nu_1^b + \delta_{\text{long}}$

Flow

Non-flow
Azimuthal anisotropy measurements

Correlation function

Two-particle correlation function $C_r(\Delta \phi = \phi_a - \phi_b)$,

$$C_r(\Delta \phi) = \frac{dN}{d\Delta \phi} \quad \text{and} \quad \nu_{n}^{ab} = \frac{\sum_{\Delta \phi} C_r(\Delta \phi) \cos(n \Delta \phi)}{\sum_{\Delta \phi} C_r(\Delta \phi)}$$

$n > 1$

$$\nu_{n}^{ab} = \nu_{n}^{a} \nu_{n}^{b} + \delta_{\text{short}}$$

$n = 1$

$$\nu_{1}^{ab} = \nu_{1}^{a} \nu_{1}^{b} + \delta_{\text{long}}$$

Flow

Non-flow

Non-flow

Short – range

HBT

Decay

Azimuthal anisotropy measurements

Correlation function

Two-particle correlation function \(Cr(\Delta \varphi = \varphi_a - \varphi_b) \),

\[
Cr(\Delta \varphi) = \frac{dN}{d\Delta \varphi} \quad \text{and} \quad v_n^{ab} = \frac{\sum_{\Delta \varphi} Cr(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} Cr(\Delta \varphi)}
\]

\(n > 1 \)

\(v_n^{ab} = \nu_n^a \nu_n^b + \delta_{\text{short}} \)

\(n = 1 \)

\(v_1^{ab} = \nu_1^a \nu_1^b + \delta_{\text{long}} \)

Flow

Non-flow

Non-flow suppression is needed

Long – range

Short – range

Momentum Conservation

Di–jets

HBT

Decay

Short-range non-flow suppression

The v_2 vs. centrality at $\sqrt{s_{NN}} = 200$ GeV different using $\Delta \eta$ cuts

✓ Short-range non-flow effect reduced using $\Delta \eta > 0.7$ cut
Long-range non-flow suppression

\[v_{11}^{ab} = v_1^{even}(p_T^a) v_1^{even}(p_T^b) + \delta_{long} \]

\[v_{11}(p_T^a, p_T^b) = v_1^{even}(p_T^a) v_1^{even}(p_T^b) - K p_T^a p_T^b \]
Long-range non-flow suppression

\[\nu_{11}^{ab} = \nu_1^{even}(p_T^a) \nu_1^{even}(p_T^b) + \delta_{\text{long}} \]

\[\nu_{11}(p_T^a, p_T^b) = \nu_1^{even}(p_T^a)\nu_1^{even}(p_T^b) - K \ p_T^a \ p_T^b \]

\(\nu_{11} \) in Eq(1) represents NxM matrix which we fit with N+1 parameters

- \(\nu_{11} \) characteristic behavior gives a good constraint for \(\nu_1^{even}(p_T) \) extraction
Long-range non-flow suppression

\[\nu_{11}(p_T^a, p_T^b) = \nu_{1}^{even}(p_T^a)\nu_{1}^{even}(p_T^b) - K p_T^a p_T^b \]

The extracted \(\nu_{1}^{even}(p_T) \) and the momentum conservation parameter, \(K \), at \(\sqrt{s_{NN}} = 200 \)

➢ The characteristic behavior of \(\nu_{1}^{even}(p_T) \) shows a weak centrality dependence
Long-range non-flow suppression

\[\nu_{11}(p_T^a, p_T^b) = \nu_{1}^{\text{even}}(p_T^a)\nu_{1}^{\text{even}}(p_T^b) - K \ p_T^a \ p_T^b \]

The extracted \(\nu_{1}^{\text{even}}(p_T) \) and the momentum conservation parameter, \(K \), at \(\sqrt{s_{NN}} = 200 \) GeV.

- The characteristic behavior of \(\nu_{1}^{\text{even}}(p_T) \) shows a weak centrality dependence
- The momentum conservation parameter, \(K \), scales as \(\langle N_{ch} \rangle^{-1} \)

\[(a) \text{ Au+Au 200 GeV} \]

\[(b) \text{ STAR Preliminary} \]

Niseem Magdy
PoS CPOD2017 (2018) 005
Flow harmonics
Beam-Energy Dependence of v_1^{even}

$$v_{11}(p_T^a, p_T^t) = v_1^{\text{even}}(p_T^a) v_1^{\text{even}}(p_T^t) - K p_T^a p_T^t$$

The extracted $v_1^{\text{even}}(p_T)$ at all BES energies

- Similar characteristic behavior of $v_1^{\text{even}}(p_T)$ at all energies
- $v_1^{\text{even}}(p_T)$ agrees with hydrodynamic calculations at 200 GeV

[Graph showing the behavior of $v_1^{\text{even}}(p_T)$ at various energies (200 GeV, 62.4 GeV, 39 GeV, 27 GeV, 19.6 GeV, 14.5 GeV, 11.5 GeV, 7.7 GeV)]

Beam-Energy Dependence of ν_1^{even}

$$\nu_{11}(p_T^a, p_T^t) = \nu_1^{even}(p_T^a)\nu_1^{even}(p_T^t) - K p_T^a p_T^t$$

The extracted ν_1^{even} (Centrality) and the momentum conservation parameter at different beam energies

For different beam energies:

ν_1^{even} increases weakly as collisions become more peripheral
Beam-Energy Dependence of v_1^{even}

$$v_{11}(p_T^a, p_T^b) = v_1^{\text{even}}(p_T^a)v_1^{\text{even}}(p_T^b) - K p_T^a p_T^b$$

The extracted v_1^{even} (Centrality) and the momentum conservation parameter at different beam energies

For different beam energies;

- v_1^{even} increases weakly as collisions become more peripheral
- Momentum conservation parameter, K, scales as $\langle N_{ch} \rangle^{-1}$
Beam-Energy Dependence of v_1^{even}

$v_{11}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - K p_T^a p_T^t$

The extracted v_1^{even} vs. $\sqrt{s_{NN}}$ at 0%-10% centrality
Beam-Energy Dependence of v_1^{even}

$$v_{11}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - K p_T^a p_T^t$$

The extracted v_1^{even} vs. $\sqrt{s_{NN}}$ at 0%-10% centrality

- $|v_1^{even}|$ shows similar values to v_3 at $0.4 < p_T < 0.7\text{ (GeV/c)}$

- $\varepsilon_3 > \varepsilon_1$

- v_3 has larger viscous damping effect than v_1^{even}
Beam-Energy Dependence of v_n

The extracted $v_{n>1}$ (Centrality) at all BES energies

- v_n (Centrality) has similar trends for different beam energies.
- v_n (Centrality) decreases with harmonic order, n.
The extracted $v_{n>1}$ vs. $\sqrt{s_{NN}}$ at 0-40% centrality

- $v_{n}(\sqrt{s_{NN}})$ shows a monotonic increase with beam energy.
- $v_{n}(\sqrt{s_{NN}})$ decreases with harmonic order, n, (viscous effects).
Viscous Attenuation

- Acoustic ansatz
 - Sound attenuation in the viscous matter reduces the magnitude of $\nu_{n=2,3}$.
 $$ \nu_{n} \propto k \varepsilon_{n}, \quad k = e^{-\beta n^2} $$

- Anisotropic flow attenuation:
 $$ \frac{\nu_{n}}{\varepsilon_{n}} \propto e^{-\beta n^2}, \quad \beta \propto \frac{\eta}{s} \frac{1}{RT} $$
Viscous Attenuation

- Acoustic ansatz
 - Sound attenuation in the viscous matter reduces the magnitude of $v_{n=2,3}$.
 \[v_n \propto k \varepsilon_n, \quad k = e^{-\beta n^2} \]

- Anisotropic flow attenuation:
 \[\frac{v_n}{\varepsilon_n} \propto e^{-\beta n^2}, \quad \beta \propto \frac{\eta}{s RT} \]

- From macroscopic entropy considerations:
 \[S \sim (RT)^3 \sim \langle N_{Ch} \rangle \text{ then } RT \sim \langle N_{Ch} \rangle^{1/3} \]
 \[\ln \left(\frac{v_n}{\varepsilon_n} \right) \propto - \left(\frac{\eta}{s} \right) \langle N_{Ch} \rangle^{-1/3} \]
Viscous Attenuation

- Acoustic ansatz
 - Sound attenuation in the viscous matter reduces the magnitude of \(v_{n=2,3} \).

\[
\nu_n \propto k \varepsilon_n, \quad k = e^{-\beta n^2}
\]

- Anisotropic flow attenuation:

\[
\frac{\nu_n}{\varepsilon_n} \propto e^{-\beta n^2}, \quad \beta \propto \frac{\eta}{s} \frac{1}{RT}
\]

- From macroscopic entropy considerations:

\[
S \sim (RT)^3 \sim \langle N_{Ch} \rangle \text{ then } RT \sim \langle N_{Ch} \rangle^{1/3}
\]

\[
\ln \left(\frac{\nu_n}{\varepsilon_n} \right) \propto -\left(\frac{\eta}{s} \right) \langle N_{Ch} \rangle^{-1/3}
\]

Using two different harmonics:

\[
\ln \left(\frac{\nu_n^{1/n}}{\nu_2^{1/2}} \right) + \ln \left(\frac{\varepsilon_2^{1/2}}{\varepsilon_n^{1/n}} \right) \langle N_{Ch} \rangle^{1/3} \propto -A \left(\frac{\eta}{s} \right)
\]

\[
\beta'' = \ln \left(\frac{\nu_n^{1/n}}{\nu_2^{1/2}} \right) \langle N_{Ch} \rangle^{1/3} \propto -A \left(\frac{\eta}{s} \right)
\]
The viscous coefficient shows a non-monotonic behavior with beam energy.

\[\beta'' = \ln \left(\frac{v_n^{1/n}}{v_2^{1/2}} \right) \langle N_{\text{ch}} \rangle^{1/3} \propto -A \left(\frac{\eta}{s} \right) \]

Figure 3. \(\sqrt{s_{\text{NN}}} \) dependence of the \(p_T \)-integrated \(v_n \) (left panel) and the viscous coefficient \(\beta'' \) (right panel). Results are shown for 0-40% central Au+Au collisions; the shaded lines are the systematic uncertainty.
Summary

Comprehensive set of flow measurements were presented for Au+Au collision system at all BES energies with one set of cuts.

- For ν_n:
 - ν_n vs centrality indicates a similar trend for different beam energies.
 - Momentum conservation parameter, K, scales as $\langle N_{\text{ch}} \rangle^{-1}$
 - $\nu_n(\sqrt{s_{NN}})$ shows a monotonic increase with beam-energy.

- The viscous coefficient shows a non-monotonic behavior with beam-energy

For different beam energies, these comprehensive measurements provide additional constraints for theoretical models, as well as $\frac{\eta}{s}$ extraction.
THANK YOU