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Machine learning and quantum computing
● Machine Learning has become one of the most popular and 

powerful techniques and tools for HEP data analysis
● Machine Learning: This is the field that gives computers “the ability 

to learn without explicitly programming them”. 
● Issues raised by machine learning

○ Heavy CPU time is needed to train complex models
■ With the size of more data, the training time increases very 

quickly
○ May lead to local optimization, instead of global optimization

● Quantum computing
○ A way of parallel execution of multiple processes using Qubits
○ Can speed up certain types of problems effectively
○ It is possible that quantum computing can find a different, and 

perhaps better, way to perform machine learning.
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Ref: “Global Optimization Inspired by Quantum Physics”, 10.1007/978-3-642-38703-6_41
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Our program with IBM Qiskit

Our preliminary program is to: 
     Employ the SVM Quantum Variational (QSVM) 
method for LHC High Energy Physics (HEP) analysis 
with the environment of IBM Qiskit, for example ttH (H → 
𝜸𝜸), Higgs production in association with two top quarks 
analysis.
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* SVM = Support Vector Machine

Our Goal:
Perform LHC High Energy Physics analysis with 
Quantum computing

* IBM Qiskit = IBM Quantum Information Science Kit
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An example of classical machine learning: 
ttH (H → 𝜸𝜸) analysis by the ATLAS Collaboration
(ttH: Higgs production in association with two top quarks)

Select events with two photons 

➔Separate into a hadronic channel (nlep = 0) and a leptonic channel     
(nlep >= 1) 

Background: continuum bkg. (γγ, etc.) and resonant bkg. from other 
Higgs production modes (ggH, etc.)

➔In each channel, train a Boosted Decision Tree (BDT, a classical 
machine learning technique) with XGBoost

create categories based on BDT output  

➔Fit diphoton mass over 7 categories 

Measure ttH production signal strength, etc.
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Phys. Lett. B 784 (2018) 173

ATLAS-CONF-2019-004

https://linkinghub.elsevier.com/retrieve/pii/S0370269318305732
https://cds.cern.ch/record/2668103
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An example of classical machine learning: 
ttH (H → 𝜸𝜸) analysis by the ATLAS Collaboration

● The observed significance is 4.1σ (4.9σ) in the ATLAS ttH 
(H→γγ) analysis using 80 fb-1 (139 fb-1) of 13 TeV data

● This talk will show the machine learning step of the ATLAS 
ttH (H→γγ) analysis with Delphes simulation events using 
quantum machine learning
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Phys. Lett. B 784 (2018) 173, 80 fb-1 ATLAS-CONF-2019-004, 139 fb-1

https://linkinghub.elsevier.com/retrieve/pii/S0370269318305732
https://cds.cern.ch/record/2668103
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Our program with IBM Qiskit
Our preliminary program can be divided into three 
parts with the Environment of IBM Qiskit:
Part 1. Our workflow for quantum machine learning.

Part 2. Employing the quantum machine learning 
method for LHC High Energy Physics (HEP) analysis 
with quantum simulators, for example the IBM Qiskit 
qasm simulator.

Part 3. Employing the quantum machine learning 
method for LHC High Energy Physics (HEP) analysis 
with IBM quantum hardware, for example the IBM Q 
Experience hardware.
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ttH: number of features(variables) = 45

●

●

Support Vector Machine (SVM) quantum 
variational method, for example

Part 1: Our Workflow for Quantum Machine Learning
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● Employing SVM Quantum Variational for LHC 
HEP analyses
○ For example, a ttH (H → 𝜸𝜸), Higgs 

production in association with two top 
quarks analysis 

○ Exploring different feature maps and 
entanglement methods

○ Training and evaluating quantum machine 
learning methods with different numbers of 
qubits, different numbers of events, 
different parameters and optimizers
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Part 2: Employing QSVM Variational with Q simulators
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● Definitions
○ A BDT(Boosted Decision Tree) is a 

classical machine learning method. 
Here we are using XGBoost.

○ Q simulator: Quantum circuits 
simulator, such as Qasm simulator.

○ Accuracy: The ratio of correct 
predictions to total predictions.

○ ROC Curve: a graph showing 
background rejection vs signal 
efficiency.

○ AUC: Area Under the ROC Curve
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Part 2: Employing QSVM Variational with Q simulators

Ref: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
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Part 2: Employing QSVM Variational with Q simulators
● With 5 qubits, we successfully finished training and testing with 200 

events, 800 events and 3200 events with IBM Qiskit qasm simulator 
(where ‘200’ events means 200 training events and 200 test events; 
same for others. Events are simulated with Delphes).
○ For QSVM, SPSA optimizer is used with 3000 iterations.
○ BDT and QSVM are using exactly the same inputs for comparison.
○ Q simulator: Here Qiskit Qasm simulator is used.

ttH(H->𝜸𝜸) ACCURACY 200 800 3200

QSVM 0.795 0.802 0.768

BDT 0.75 0.785 0.780

ttH(H->𝜸𝜸) AUC 200 800 3200

QSVM 0.865 0.859 0.837

BDT 0.821 0.869 0.863
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● Here are ROC Curve plots with QSVM(red) and 
BDT(green), for 200 events, 800 events and 3200 
events, with 5 qubits.

● ROC curve(Red): QSVM, 5 qubits
● ROC curve(Green): classical machine learning BDT 

with the same inputs of 5 variables per event as 
QSVM for comparison.

● ROC curve(Black): classical machine learning BDT 
with all 45 variables, all (~ 25k) simulated events.

● For 800 events, the red curve is close to the green 
curve
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Part 2: Employing QSVM Variational with Q simulators
● Here BDT(green) and QSVM(red) are using exactly the same inputs for comparison.
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● Here are ACCURACY and AUC 
for the QSVM(red) and 
BDT(green), with 200 events, 
800 events and 3200 events.
○ The QSVM(red) method has a 

similar accuracy and AUC to the 
BDT(green) method with 5 
qubits and a limited number of 
events. But it’s still far from the 
BDT with all variables and all 
events(black).
■ Working on various ways 

(e.g. optimizer, loss 
function) to improve qsvm 
AUC.
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Part 2: Employing QSVM Variational with Q simulators
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Part 2 Bonus: Another example of classical 
machine learning: 
H → μμ analysis by the ATLAS Collaboration

Select events with two muons 

➔Separate into 0-jet channel, 1-jet channel and 2-jet channel

Background: Z→μμ production

➔Train Boosted Decision Trees with XGBoost

3 training variables in the 0-jet channel, 6 in the 1-jet channel, 14 in 
the 2-jet channel 

create categories based on BDT output  

➔Fit dimuon mass over all categories 

The observed(expected) significance is 0.8σ(1.5σ) using 139 fb-1 of 
ATLAS data
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ATLAS-CONF-2019-028

https://cds.cern.ch/record/2682155
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Part 2 Bonus (Very preliminary): Applying Quantum 
SVM to the H → μμ analysis

● We are also performing the machine learning step of the H→μμ analysis 
with Delphes simulation events using quantum SVM  

● We successfully finished training and testing for 0-jet (3 qubits), 1-jet (5 
qubits) and 2-jet (5 qubits) channels with 400 events using the IBM 
Qiskit qasm simulator (where 400 events means 400 training events and 
400 test events; same for others).
○ In the 1-jet and 2-jets channels, we need to use PCA to reduce the 

number of training variables to 5 

H->μμ  ROC AUC
400 events

0-jet (3 
qubits)
3 variables 

1-jet (5 
qubits)
5 variables 

2-jet (5 
qubits)
5 variables 

QSVM 0.585 0.586 0.827

BDT 0.598 0.584 0.827
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● Here are ROC Curve plots with QSVM(red) and 
BDT(green) for 400 events, with 3 qubits (for 0-jet) 
or 5 qubits (for 1jet and 2-jet)

● ROC curve(black): classical machine learning 
BDT with all variables and all (57k for 0 jet, 20k for 
1 jet, 9k for 2 jet) simulated events.

● For 400 events, the AUC of the red curve is close 
to the AUC of the green curve

● Now back to the ttH example… 
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Part 2 Bonus (Very preliminary): Applying Quantum 
SVM to the H → μμ analysis

2-jet0-jet

1-jet
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● With the help of IBM Research Zurich, we 
finished some training on the IBM Q hardware 
with 100 training events and 100 test events 
with 5 qubits. 

● Because of hardware access time and 
timeout limitations, we only finished very few 
iterations (for example 10,30,50) on the 
hardware, instead of several thousands of 
iterations on the simulators.
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Part 3: Employing QSVM Variational with IBM Q 
hardware
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● Here are ACCURACY and AUC plots 
with different numbers of iterations 
with 100 Delphes events.
○ Due to access time limitations, on 

the hardware we only finished 10, 
30 and 50 iterations.

● With limited iterations, the result from 
the hardware(red) is compatible with 
the result from the simulator(blue) in 
tested iterations.

● The result from the simulator(blue) 
reached a similar result as the 
classical BDT(green) method with 
enough iterations.
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Part 3: Employing QSVM Variational with IBM Q hardware

BDT

Qsvm hardware

Qsvm simulator

BDT

Qsvm hardware

Qsvm simulator

this point is being run

this point is being run
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Part 3: Employing QSVM Variational with IBM Q hardware

● Temporary limitations with IBM Q hardware
○ Only a few iterations are tested currently

■ Limited access time
● Long queue time

○ Input preparation and output reading is not 
optimized

○ We are working on running hardware with a 
larger number of iterations   
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Referring to Part 1 of this presentation: 

● We introduced our workflow to employ 
quantum machine learning methods for LHC 
High Energy Physics analyses.
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Summary
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Referring to Part 2 of this presentation: 

● Using IBM Qiskit simulator, we have successfully 
employed the Quantum Support Vector Machine method 
for a ttH (H → 𝜸𝜸), Higgs production in association with 
two top quarks analysis at the LHC with Delphes 
simulation events. We have measured the accuracy and 
AUC with different numbers of events. 

● At the current stage, with a 5 qubit QSVM, we have reached 
an accuracy of 0.77 and AUC of 0.84, very close to the 
accuracy of 0.78 and AUC of 0.88 from a classical machine 
learning method (BDT). (Here the BDT and QSVM are using 
exactly the same inputs for comparison). At the same time, 
we are working on various ways (e.g. different optimizers, 
loss functions) to improve AUC.
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Summary
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Referring to Part 2 of this presentation: 

● We are also performing the machine learning 
step of the H→μμ analysis with Delphes 
simulation events using quantum SVM  

21

Summary
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Referring to Part 3 of this presentation: 

● Using the IBM Q Experience hardware, we have 
successfully employed a Quantum Support Vector Machine 
method(5 qubits) for a ttH (H → 𝜸𝜸), Higgs production in 
association with two top quarks analysis at the LHC with 
Delphes simulation events.

● Again, the accuracy and AUC are limited by the number of 
iterations. But the hardware result is compatible with the 
simulator result, which is itself similar to the result from a 
classical machine learning BDT with enough iterations. We 
are working on running hardware with a larger number of 
iterations 

22

Summary
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BACKUP SLIDES
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● Quantum algorithm running flow, for example IBM Qiskit
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Quantum algorithm running flow

Quantum algorithm Quantum qasm 
circuits

Quantum simulator/ 
Quantum hardware

compiling running

● Issues:
○ The quantum compiling process compiles codes and 

input data together, while classical compiling 
separates codes and input data.
■ With more data, the compiling process will use 

more time and more memory.
■ With different data, a new compiling is required.

* Qasm = Quantum assembly language
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Quantum measurement
●

●

○

●
○

●

25



Alex Wang (University of Wisconsin)       DPF 2019 August 01, 2019

Hardware Information
● Hardware status currently

○ Classical computer:
■ 3~4 GHz
■ Millions of circuits with many cores, GPU 

can have thousands of cores
○ Quantum computer

■ 200 ns per operation
■ 5M Hz
■ Not many parallel channels or threads
■ https://quantumcomputing.stackexchange.c

om/questions/2402/how-many-operations-c
an-a-quantum-computer-perform-per-seco
nd
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https://quantumcomputing.stackexchange.com/questions/2402/how-many-operations-can-a-quantum-computer-perform-per-second
https://quantumcomputing.stackexchange.com/questions/2402/how-many-operations-can-a-quantum-computer-perform-per-second
https://quantumcomputing.stackexchange.com/questions/2402/how-many-operations-can-a-quantum-computer-perform-per-second
https://quantumcomputing.stackexchange.com/questions/2402/how-many-operations-can-a-quantum-computer-perform-per-second
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●

■

■
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How to use quantum computer
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●

○
■

■

○
■
■
■
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Tensor product feature map
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●
○
○

●
○
○ …
○ φ Σ

○
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Other feature map methods
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●
○

○

○
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Ref: Support Vector Machine and Its 
Application(Mingyue Tan, 2004)

Ref: Support vector machine(Wikipedia)

Support Vector Machine



Alex Wang (University of Wisconsin)       DPF 2019 August 01, 2019

●
○

○
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■
■

■

Ref: Support vector 
machine(Wikipedia)

SVM kernel function
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●
○

■

■

○
○
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Quantum SVM


