Institute for Research and Innovation in Software for High Energy Physics (IRIS-HEP)

http://iris-hep.org

IRIS-HEP was funded as of 1 September, 2018, and is currently ramping up activities
Science Driver: Discoveries beyond the Standard Model of Particle Physics

From “Building for Discovery - Strategic Plan for U.S. Particle Physics in the Global Context” - Report of the Particle Physics Project Prioritization Panel (P5):

1) Use the Higgs boson as a new tool for discovery
2) Pursue the physics associated with neutrino mass
3) Identify the new physics of dark matter
4) Understand cosmic acceleration: dark matter and inflation
5) Explore the unknown: new particles, interactions, and physical principles

Computational and Data Science Challenges of the High Luminosity Large Hadron Collider (HL-LHC) and other HEP experiments in the 2020s

The HL-LHC will produce exabytes of science data per year, with increased complexity: an average of 200 overlapping proton-proton collisions per event.

During the HL-LHC era, the ATLAS and CMS experiments will record ~10 times as much data from ~100 times as many collisions as were used to discover the Higgs boson (and at twice the energy).

Involved A Diverse
• Computing Management from the Experiments and Labs
• Individuals interested in the problems
• Members of other compute intensive scientific endeavors
• Members of Industry

Individual Papers on the arXiv:
Careers & Training, Conditions Data, DOMA, Data Analysis & Interpretation, Data and Software Preservation, Detector Simulation, Event/Data Processing Frameworks, Facilities and Distributed Computing, Machine Learning, Physics Generators, Security, Software Development, Deployment, Validation, Software Trigger and Event Reconstruction, Visualization

Community White Paper & the Strategic Plan
Growing a Global Collaboration

UCSD/SDSC
January, 2017
HSF CWP

Annecy
June, 2017
HSF CWP

JLab
March, 2018
HSF/OSG/WLCG

Naples
March, 2017
WLCG/HSF
Sustainable Software R&D objectives

1) Development of **innovative algorithms** for data reconstruction and triggering;

2) Development of highly performant **analysis systems** that reduce “time-to-insight” and maximize the HL-LHC physics potential; and

3) Development of **data organization, management and access systems** for the community’s upcoming Exabyte era.

4) Integration of software and scalability for use by the **LHC community on the Open Science Grid**, the Distributed High Throughput Computing infrastructure in the U.S.

The plan for IRIS-HEP reflects a community vision developed by an international community process organized by the HEP Software Foundation (https://hepsoftwarefoundation.org). The S2I2-HEP conceptualization project (http://s2i2-hep.org) derived a Strategic Plan from the community roadmap which would leverage the strengths of the U.S. university community. IRIS-HEP aims to function as an intellectual hub for the national and international HEP community, through training, community workshops and the development of wider collaborations with the larger computer and data science communities.
IRIS-HEP Structure and Executive Board

Institute Management
GOVERNANCE

Advisory Services
HUB OF EXCELLENCE

Institute Blueprint

Analysis Systems

Data Organization, Management and Access

Innovative Algorithms

Exploratory

Software Sustainability Core
Software Engineering, Training, Professional Development, Preservation, Reusability

Scalable Systems Laboratory
Scalability & Platforms Testing

OSG-LHC Services
Packaging, Validation, Deployment Support and Operations of Production Services

Executive Board

The IRIS-HEP Executive Board manages the day to day activities of the Institute.

Peter Elmer
Princeton University
Peter.Elmer@cern.ch
Institute PI and Executive Director

Gordon Watts
University of Washington
Institute co-PI and Deputy Executive Director

Brian Bockelman
Morgridge Institute
Institute co-PI and DOMA R&D Area Lead

Heather Gray
University of California, Berkeley
Innovative Algorithms Area co-Lead

David Lange
Princeton University
David.Lange@cern.ch
Innovative Algorithms Area co-Lead

Kyle Cranmer
New York University
Institute co-PI

Sudhir Malik
University of Puerto Rico at Mayaguez
Blueprint Coordinator

Mark Neubauer
University of Illinois at Urbana-Champaign
Analysis Systems Area Lead

Rob Gardner
University of Chicago
SSL Area Lead

Frank Wuerthwein
University of California, San Diego
OSG-LHC Area Lead and OSG Executive Director
IRIS-HEP Team

http://iris-hep.org/about/team

About 30 FTEs of effort spread over a larger number of people from 18 universities/institutions
Innovative Algorithms - Trigger/Reconstruction

Algorithms for real-time processing of detector data in the software trigger and offline reconstruction are critical components of HEP’s computing challenge.
Innovative Algorithms

These algorithms face a number of new challenges during HL-LHC:

- Upgraded accelerator capabilities, with more collisions per bunch crossing (“pile-up”)
- Detector upgrades, including new detector technologies and capabilities
- Increased event rates to be processed
- Emerging computing architectures

Specific R&D investments include collaboration with ACTS, continuation of the parallel Kalman Filter tracking project, work on HLS4ML, etc.
Data Organization, Management and Access (DOMA)

The DOMA focus area performs fundamental R&D related to the central challenges of organizing, managing, and providing access to exabytes of data from processing systems of various kinds.

- **Data Organization**: Improve how HEP data is serialized and stored.
- **Data Access**: Develop capabilities to deliver filtered and transformed event streams to users and analysis systems.
- **Data Management**: Improve and deploy distributed storage infrastructure spanning multiple physical sites. Improve inter-site transfer protocols and authorization.
In the HL-LHC era, we must deliver more events - and at lower latencies - if the analysts want to make progress!

- Low-latency delivery of events requires transformation from long-term archival formats that we want to decrease data size.
- Data should be transformed and delivered at the storage level, not at the workstation.
- Users should be enabled to work on a multitude of data formats (esp. non-ROOT) without having to write them to disk.

We are currently prototyping an Intelligent Data Delivery Service (IDDS) that delivers the desired LHC events without requiring complex transforms or skims from the user.
DOMA: Moving Bulk WLCG Data

- There is a strong movement in the community to move from niche protocols for bulk data movement to more standardized ones such as HTTP.
 - Bockelman co-leads the working group within the WLCG for “third party copy” (TPC).

- During IRIS-HEP, HTTP-TPC has gone from small test transfers to scale tests on servers to scale tests in the WLCG DOMA community.
 - Demonstrated HTTP’s ability to achieve speeds similar to GridFTP on dedicated server hardware.
Analysis Systems R&D

Primary Goals: Develop sustainable analysis tools to extend the physics reach of the HL-LHC experiments by

- creating greater functionality
- reducing time-to-insight
- lowering the barriers for smaller teams, and
- streamlining analysis preservation, reproducibility, and reuse.

Compared to DOMA and Innovative Algorithms (which has more targeted reco/trigger goals), the Analysis Systems group is dealing with more “greenfield” area where there is a very heterogeneous set of use cases and relevant components.

The nature of IRIS-HEP Analysis Systems tasks is more exploratory: “big R” (R&d)
Analysis Systems Data Flow and Projects

- **DOMA**
 - Production System Analysis Files
 - Leverage & align with industry
 - Training & workforce development
 - Partner Focus Area

- **SSL**
 - Scan data, explore with histograms, making final plots
 - scikit-hep
 - awkward array
 - Parsl

- **SSL**
 - Fitting, manipulation, limit extrapolation
 - pyhf
 - HistFactory v2
 - GooFit
 - Decay Language

- **Archiving, publication, Reinterpretation, etc.**
 - Analysis Database
 - Recast
 - CAP/INSPIRE/HEPDATA

Analysis Systems, analysis & declarative languages (underlying framework)
Scalable Systems Laboratory (SSL)

Goal: Provide the Institute and the HL-LHC experiments with scalable platforms needed for development in context

- Provides access to infrastructure and environments
- Organizes software and resources for scalability testing
- Does foundational systems R&D on accelerated services
- Provides the integration path to the OSG-LHC production infrastructure
Open Science Grid (OSG) for the LHC

The People in OSG

Operations = UNL
Security = Indiana University
Software = U. Wisconsin – Madison
Networking = U. Michigan

A total of 6 FTE across 11 people. These people have worked together and with the LHC program years.

(Slide from FKW)
Open Science Grid (OSG) and IRIS-HEP

OSG Effort Portfolio

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Technology</td>
<td>Operations</td>
<td>Support</td>
<td>Networking</td>
<td>Security</td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>∑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∑</td>
<td>17.56</td>
<td>7.46</td>
<td>4.05</td>
<td>2.82</td>
<td>1.24</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>OSG N5Y</td>
<td>6.86</td>
<td>2.48</td>
<td>2.05</td>
<td>1.82</td>
<td>0.00</td>
<td>0.20</td>
<td>0.32</td>
</tr>
<tr>
<td>IRIS-HEP</td>
<td>5.94</td>
<td>3.08</td>
<td>1.00</td>
<td>0.00</td>
<td>0.39</td>
<td>0.80</td>
<td>0.67</td>
</tr>
<tr>
<td>SAND</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OSG-NP</td>
<td>1.00</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>TNRP</td>
<td>1.00</td>
<td>0.70</td>
<td>0.20</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CESER</td>
<td>2.00</td>
<td>0.70</td>
<td>0.30</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

IRIS-HEP is roughly 1/3 of total effort in OSG

(Slide from FKW)
This is a general framework for training, but from the NSF we have funds from both IRIS-HEP (OAC-183665) and a separate project FIRST-HEP (OAC-1829707, OAC-1829729, http://first-hep.org) which can work towards implementing this model.
Training, Education and Outreach Events

Upcoming events:

 - Lawrence Berkeley National Laboratory
 - [Indico page](#)

Past events:

- 22-26 Jul, 2019 - Computational and Data Science for High Energy Physics (CoDaS-HEP) 2019 School
 - Princeton University
 - [Webpage](#)
- 10 Jun, 2019 - FIRST-HEP/ATLAS Software Training
 - Argonne National Laboratory
 - [Indico page](#)
- 3-4 Jun, 2019 - An introduction to programming for STEM teachers
 - University of Puerto Rico at Mayaguez
 - [Indico page](#)
- 24-26 Apr, 2019 - Machine Learning Hackathon for UPRM Students
 - University of Puerto Rico at Mayaguez
 - [Indico page](#)
- 1-2 Apr, 2019 - Software Carpentry Workshop
 - Fermi National Accelerator Laboratory
 - [Indico page](#)

In collaboration with FIRST-HEP (http://first-hep.org), the Carpentries (https://carpentries.org) and others
IRIS-HEP Community Activities and Events

Upcoming Events:
IRIS-HEP team members are involved in organizing the following events:

- 29 Jul, 2019 - IRIS-HEP Tutorial: Fast columnar data analysis with data science tools (*Northeastern University / APS DPF 2019*)
- 19 Aug - 23 Aug, 2019 - ATLAS Software Carpentries Training (*LBNL*)
- 10 Sep - 11 Sep, 2019 - Blueprint: Accelerated Machine Learning and Inference (*Fermilab*)
- 13 Dec - 14 Dec, 2019 - Machine Learning and the Physical Sciences at NeurIPS 2019 (*Vancouver Convention Centre*)
- 15 Jan - 17 Jan, 2020 - ML4Jets2020 (in planning) (*New York University*)

Recent Events:

- 1 Jul - 2 Jul, 2019 - TrackML Challenge: Grand Finale (*CERN*)
- 21 Jun - 22 Jun, 2019 - Blueprint: Analysis Systems R&D on Scalable Platforms (*NYU*)
- 10 Jun, 2019 - FIRST-HEP/ATLAS Software Training (*Argonne National Lab*)
- 3 Jun - 4 Jun, 2019 - An introduction to programming for STEM teachers (*University of Puerto Rico at Mayaguez*)
- 6 May - 8 May, 2019 - Analysis Description Languages Workshop (*Fermilab*)

See http://iris-hep.org for the full and latest list
IRIS-HEP Topical Meeting Series

Two weekly time slots are available for IRIS-HEP topical meetings:

- Mondays - 17:30-18:30GVA (Vidyo and 40-R-810 at CERN)
- Wednesdays - 18:00-19:00GVA (Vidyo only)

There is one event in the future. Hide

April 2019

- 15 Apr Development of new Histogram tools

March 2019

- 25 Mar Introduction to modern CDN Architectures
- 04 Mar The FAST project

February 2019

- 25 Feb Analysis Description Languages
- 18 Feb Integration of C++ Modules into CMSSW
- 13 Feb HLS4ML: Using ML on FPGAs to enhance reconstruction output
- 04 Feb Training for Software, Computing, Computational and Data Science in HEP

January 2019

- 26 Jan FuncX: High Performance Function as a Service for Science

Meetings are announced on the announcements@iris-hep.org mailing list

Recorded videos are available in Youtube (see links on the individual agenda pages)

https://indico.cern.ch/category/10570/
Connecting with IRIS-HEP

Website: http://iris-hep.org

Public announcement mailing list: announcements@iris-hep.org [Subscribe]

Topical meetings: https://indico.cern.ch/category/10570/

We will be continuing to organize, co-organize and host various events going forward, see the main project website above.
IRIS-HEP-related talks/events APS/DPF 2019

Monday:

- IRIS-HEP Tutorial: Fast columnar data analysis with data science tools (Nick Smith, Jim Pivarski)

Tuesday:

- COFFEA - Columnar Object Framework For Effective Analysis (Nick Smith)
- pyhf: a pure Python statistical fitting library from the high energy physics community with tensors and autograd (Giordon Stark)
- Extending RECAST for truth-level analysis reinterpretations (Alex Schuy)

Wednesday:

- ACTS: a common track reconstruction software (Xiaocong Ai)

Thursday:

- Evolving CMS offline computing towards LHC Run3 and HL-LHC (David Lange)
Summary

HEP faces major challenges in the 2020s: Data, Compute, Staffing

The HSF executed an important community process that produced the CWP.

The collaborative spirit continues to grow and bodes well for us (as a community) to meet those challenges.

IRIS-HEP

We are focusing on 3 R&D areas from the CWP: Innovative Algorithms, Analysis Systems, and DOMA.

Plus training, a dedicated integration activity and continuity for the OSG services for the LHC.

We are just beginning our activities and are looking forward to collaborating with many of you in the coming years!