Measurement of the Reactor Antineutrino Spectrum from ²³⁵U Fission using PROSPECT

Pranava Teja Surukuchi

On behalf of the PROSPECT collaboration

July 30, 2019

Reactor as Source of Antineutrinos

- Fission produces neutron rich daughters
- They beta decay and produce antineutrinos
- Pure source of electron antineutrinos
- Fissioning isotopes: 235U 238U 239Pu 241Pu
- Spectra different for different isotopes

Discrepancies in Spectrum Measurements: The 'Bump'

Recent θ_{13} experiments precisely measured spectrum from Low Enriched Uranium (LEU) reactors

- All experiments show disagreement with state-of-the art models
- Could be a contribution from a single isotope or multiple isotopes
- Sterile neutrinos cannot explain this anomaly

Wright

.aboratory

• Points towards reactor models being wrong: Need data

LEU Reactors: ²³⁵U ~ 45-65% ²³⁹Pu ~ 25-35% ²³⁸U,²⁴¹Pu < 10% each

PROSPECT

Physics Goals:

I.Reactor model independent eV-scale sterile neutrino search at short baselines

2.Precisely measure reactor ²³⁵U antineutrino spectrum

HFIR

Highly Enriched Uranium **Research** Reactor: >99% ²³⁵U fissions

Compact reactor core: 44 cm wide, 51 cm tall Short reactor cycles (~25 days, 46% uptime) Low ²³⁹Pu buildup **(< 0.5%)**

Reactor on surface: Little overburden

Design should overcome low overburden and high background environment

5

Detector Design

- Single volume ~4 ton 6Li-loaded liquid scintillator detector
- Composed of I54 (IIxI4) optically separated segments (~25 liters)
- Low mass optical separators (~1.5 mm thick)
- Double-ended readout
- Segmentation:
 - 3D event reconstruction
 - Reactor model independent oscillation search
 - Calibration access
 - Fiducialization

Detection and Background Rejection

- High light yield 8200 ph/MeV Good energy resolution
- ⁶Li allows for spatial and temporal compact IBD events
 - Background rejection from topology cuts
- Pulse Shape Discrimination provides particle ID
- Analysis cuts provide an ability to suppress backgrounds by ~O(4)

Detector Characterization: PSD Performance

- Excellent particle ID of gamma interactions, neutron captures, and nuclear recoils
- Dominant backgrounds: Cosmogenic fast neutrons, reactor-related gamma rays, reactor thermal neutrons
 - Vast majority identified and rejected by PSD for Prompt and Delayed signals
- Tag IBDs with high efficiency and high purity

Detector Characterization

Gamma sources (¹³⁷Cs, ⁶⁰Co, ²²Na):

Deployed throughout detector, measure single segment response

Fast-neutron tagged ¹²B:

aboratory

Beta spectrum calibration over full antineutrino range

High light collection: 795±15 PE

Spectrum Measurement

Model Comparison

- Predicted spectrum passed through detector response model
- Predicted spectrum = Huber 235 U+ contributions from non-fissioning and non-equilibrium isotopes
- χ^2 /ndf =51.4/31 (p-value 0.01) for **shape-only** comparison with model
- Broad agreement, but overall data not in agreement with model

Testing Origin of the 'Bump'

- Could the LEU-measured 'Bump' be solely explained by ²³⁵U ?
- Tested by comparing data to ad-hoc models
- Local deviation modeled as a gaussian based on Daya Bay measured spectrum with floating normalization
- Best-fit bump @ 69±53%
- Disfavors bump from ²³⁵U-only (178%) at 2.1σ

Concluding Remarks

- PROSPECT started taking measurements in March 2018
- First modern measurement of high-statistics antineutrino spectrum from a HEU reactor
- Broad agreement with Huber model but bad fit to the data
- Currently **statistics limited**, improved comparison with more data
- Excellent S:B (1.7:1) achieved with an on-surface detector (<1 mwe overburden)
- Provides an opportunity for detailed understanding of cosmogenic backgrounds
- Key technology for reactor monitoring demonstrated

Thanks

I• DE

Extra

Detector Performance

- Calibration Source Deployment:
 - 35 in-situ calibration source tubes throughout detector to map energy response •
 - uniform segment to segment response
 - ²⁵²Cf source to study neutron capture efficiency •
- Intrinsic radioactive sources

aboratory

- Track uniformity over time with distributed internal single-segment sources:
- Alpha lines from $^{212}Bi \rightarrow ^{212}Po \rightarrow ^{208}Pb$ decays, nLi capture peak
- Stability in reconstructed energy over time

Calibration

Geometric mean of light collection for two PMTs in a single segment

segment for all 308 segments

Calibration

18

Wright

Laboratory