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Compact Muon Solenoid (CMS) is
one of the general-purpose physics
detectors at the Large Hadron
Collider (LHC)

O 13 TeV proton-proton collisions

CMS detector consists of four
layers:

1. Inner Tracker

2. Electromagnetic Calorimeter
(ECAL)

3. Hadronic Calorimeter (HCAL)
4. Outer Tracker

Focusing on the ECAL and HCAL
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CMS,
=2 Test Beam Setup and Dataset
H2 CMS ECAL and HCAL as detectors "
J ECAL: 9x9 crystals (Figure c)

1 HCAL: 3x4 towers (Figure d)

m~ beam incident upon ECAL and
HCAL ranging from 2 to 300 Gel/' /c
(nominal momenta)

d 2,3,45,6,7,8,9, 20, 30, 50, 100,
150, 200 and 300 GeV/c

Data is reconstructed energy images
U ECAL Energy + HCAL Energy #= Nominal Energy
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s Analytic Corrections

(Abdullin et al, 2009): event-by-event raw energy corrections
can be obtained by compensating the raw energy response
O Raw energy = ( 7x7 ECAL energy sum ) + ( 3x3 HCAL energy sum)

HB (GeV)

.,.
by

HB (GaV)

HE Gav)

Parameterization of the corrected raw energy (Egcar + Efjcar)

uses a third-order nonlinear function of . EBGeV)

Z =Egcar/(Egcar + Eycar) (Figure C) Uncompensated Compensated
£ . (c)
Energy resolution is computed from the mean and RMS of a 3 3
Gaussian fit about the parameterized beam distributions E ”E_ .2
O Only data between 5 to 300 GeV /c is fit N _'___—‘—
'; | e T _.............-_I"'"_H
E E_ ——
'; 'il.lilE [2]
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CMS,

Machine Learning Motivation

What are the necessary ingredients for training a neural network?

v’ Large dataset: thousands of events for each nominal beam energy
(~6000)

v “Truth” values: nominal beam energy (2 GeV, 3 GeV,...300 GeV)

Use neural network to learn differences in images with similar domains
1 Bypass dependence on prior-knowledge
1 Direct dependence on energy response
1 Scales naturally with arbitrary data complexity

We train convolutional and dense neural networks that apply event-by-event
corrections to the raw energy

1 Results compared to Abdullin et al [2] for reasonability

2019-07-27 Determination of H2 CMS Barrel Test Beam Calorimeter Response Correction to Pion Beams with Deep Neural Networks

EIT,
-‘."7
GS

BROWN

6/ 17



CMS, .
2 Model Architectures

Dense Neural Network Convolutional Neural Network
* Three types of layers: * Four types of layers:
1. Input (number of pixels) 1. Input (EB and HB image)

2. Hidden (custom) Convolution/Pooling (custom)

2
3. Output (corrected energy) 3. Hidden (custom)
4. Output (corrected energy)
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Neural Network Model Features

A model architecture is characterized by its hyper parameters:

Batch Size

Dropout

Dense Layer

Initial Nodes
Convolutional Layer
Kernel Size

Filter Size
Activation Function
Optimizer

Learning Rate

Loss Function

Patience

**The high-lighted hyper parameters were optimized using Bayesian optimization
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J

Z Neural Networks for Energy Correction

: Activation Functions
44 — ELU

Optimizer Adam Adam o 3
Loss Function % logcosh % logcosh a %
= 1
Dense Activation 2 ]
Function Softplus Softplus 2 N
Convolutional N
Activation Function ELU = - 3 5 ; ;
Input Space
. . . . . L Functi
O Adam is a gradient-based stochastic optimizer designed for 30 e
training deep neural networks 25
O Softplus maps negative values into a positive output space 20
and has non-vanishing gradient o 1
O Data contains negative inputs after subtracting off the 2 1o
pedestal 05
O ELU decreases negative inputs and has a non-vanishing 00
gradient w057 - ° . ] : !
O Patience is the number of epochs before early stopping Percent Error
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o Energy Response Parameterization

Trained network has a bias in the low energy (< 20 GeV) which is parameterized
U Parameterization applied event-by-event to the predicted data

1. Neural Network Output 2. Parameterize Energy Response 3. Event-by-event Correction
CMS Work in Progress
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Energy Distribution Corrections: CNN
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Energy Resolution and Response Results
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For application, model must

perform well on datasets not

exposed to during training
dSparse variety — classification

All-but-one training and
Interpolate on the excluded
dataset to check for regression

U Beam distributions for 150 GeV
DNN and CNN retain the energy
distribution form

The lower left plot shows the
energy response of the
Interpolated values
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Different forms of neural networks (CNN and DNN) can be trained to
predict the true calorimeter energy response

By parameterizing the network predictions, corrections can be further
improved

d Training is independent of contextual knowledge and energy dependent

The neural network models require a training dataset that has
sufficient overlap between neighboring energy’s beam distributions
for interpolation

This is a work in progress which can be further improved by using
simulation data at select energies
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Analytic Correction Process

1. Parameterize (r/eyg) as a function of Ey5 using either Wigmans’ parameterization (> 8 GeV /c) or a logarithmic
function (< 8 GeV /c),

(/ens) = 1+ (e/h— 1e)/>;LO.1log(EHB), (Eop > 8 GeV/O)

(t/eyp) = 0.179 + 0.005 log(Eyz) + 0.413 + 0.005,  (Eyg < 8 GeV/c)

2. Parameterize (m/egg) as a function of Egg using,

(Egp)
Ey, — Epp
Eng = Eyg/(m/eyp), Egp = Egp/(m/egp)

3. Determine the corrected responses, Ej5 and Egg, which can then be parameterized to provide the corrected

(m/egp) =

compensated response as a function of Z = Egg/(Egg + Eyg),

Epp + Epp
Ey

> = (0.412 + 0.045)Z3 — (0.096 + 0.058)Z2 — (0.084 + 0.018)Z + 1.00
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= Neural Network Model Features

A model architecture is characterized by its hyper parameters:

Batch Size A fraction of the training set optimized together in a single epoch
Dropout Fraction of nodes in a dense layer suppressed in a training epoch

Dense Layer Receives fully-connected inputs and produces a fixed number of outputs
Initial Nodes Number of outputs in the first hidden dense layer

Convolutional Layer Receives an image as an input and produces a smaller image

Kernel Size The weighted mask’s dimensions that convolves an image

Filter Size The number of convolved images to be considered together for an output
Activation Function Maps the phase space of an input to a desired output phase space
Optimizer Function that determines how to optimize weights

Learning Rate The rate at which the optimizer adjusts weight values

Loss Function The metric used for optimization

Patience Number of epochs allowed before early stopping

**The high-lighted hyper parameters were optimized using Bayesian optimization
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Using Scikit-Optimize python library

Define a hyper parameter space to survey and the number of random starts and
total starts for the optimizer to survey

* The optimizer assumes that the hyper parameter space is Gaussian distributed
about the optimal set of hyper parameter
The metric used for the model optimization is,

Mean Absolute Error
Epochs until Early Stopping

* Weighting the loss by how many epochs until early stopping ensures robustness

during training and punishes sudden loss drops that eventually diverge (associated

with larger learning rates)

Bayesian Hyper Parameter Optimization

CMS Work in Progress
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