Precision measurements of Z and W boson properties at CMS

Lacey Rainbolt

Northwestern University CMS Collaboration

Differential $Z \rightarrow \ell^+ \ell^-$ cross sections

13 TeV, 35.9 fb⁻¹

"Measurements of differential Z boson production cross sections in pp collisions with CMS at $\sqrt{s} = 13$ TeV" CMS-PAS-SMP-17-010, 2019

Source	$Z ightarrow \mu \mu$ (%)	$Z \rightarrow ee (\%)$
Luminosity	2.5	2.5
Muon reconstruction efficiency	0.4	-
Muon selection efficiency	0.7	-
Muon momentum scale	0.1	_
Electron reconstruction efficiency	-	0.9
Electron selection efficiency	-	1.0
Electron momentum scale	-	0.2
Background estimation	< 0.1	< 0.1
Total (excluding luminosity)	0.8	1.4

 \leftarrow normalize

	Cross section	$\sigma \mathcal{B} [pb]$
	$\sigma_{Z \to \mu \mu}$	$694 \pm 6 (\mathrm{syst}) \pm 17 (\mathrm{lumi})$
	$\sigma_{\mathrm{Z} ightarrow ee}$	$712\pm10(\mathrm{syst})\pm18(\mathrm{lumi})$
combine \rightarrow	$\sigma_{\mathrm{Z} ightarrow \ell \ell}$	$699\pm5(\mathrm{syst})\pm17(\mathrm{lumi})$

y

p_{T}

Search for $Z \rightarrow J/\psi \gamma$ 13 TeV, 35.9 fb⁻¹

"Search for rare decays of Z and Higgs bosons to J/ ψ and a photon in proton-proton collisions at $\sqrt{s} = 13$ TeV" Eur. Phys. J. C **79** (2019) 94

direct + indirect + higher order...

 $\mathcal{B}_{\rm SM}({\rm Z} \rightarrow {\rm J}/\psi\,\gamma) \approx 9.0 \times 10^{-8}$

 $J/\psi \to \mu^+ \mu^-$

V

Barrel, high R_9

Barrel, low R_9

Endcaps

Purity: 0.99%

Purity: 0.65%

Purity: 0.68%

				~2%
				\downarrow
	$Z ightarrow { m J}/\psi \gamma$	$(81 < m_p)$	$_{\mu\mu\gamma}$ < 101 GeV)	
	Observed		Nonresonant	Resonant
Category	data	Signal	background	background
EB high R ₉	69	0.69	66.9±4.9	2.1
EB low R_9	67	0.42	$62.6 {\pm} 4.6$	1.2
EE	47	0.30	$43.0 {\pm} 4.0$	1.0
			1	

stat. only

	$Z \rightarrow J/$	$\psi\gamma$ channel
	Signal	Resonant
Source		background
Integrated luminosity	2	5%
Theoretical uncertainties		
Signal cross section (scale)	3.5%	5.0%
Signal cross section (PDF)	1.7%	5.0%
Branching fraction		5.0%
Detector simulation, reconstru	uction	
Pileup weight	0.8%	1.8%
Trigger	4.0%	4.0%
Muon ident./Isolation	3.0%	3.4%
Photon identification	1.1%	1.1%
Electron veto	1.1%	1.1%
Signal model		
$m_{\mu\mu\gamma}$ scale	0.06%	
$m_{\mu\mu\gamma}$ resolution	1.0%	—

Channel	Polarization	σ (fb) at 95% CL	$\mathcal{B}(\mathrm{Z}(\mathrm{H}) ightarrow \mathrm{J}/\psi\gamma)$ at 95% CL	$\frac{\mathcal{B}(Z (H) \rightarrow J/\psi\gamma)}{\mathcal{B}_{SM}(Z (H) \rightarrow J/\psi\gamma)}$
	Unpolarized	$4.6\;(5.3^{+2.3}_{-1.6})$	$1.4~(1.6^{+0.7}_{-0.5}) imes 10^{-6}$	15 (18)
$Z ightarrow { m J}/\psi \gamma$	Transverse	$5.0\;(5.9^{+2.5}_{-1.7})$	$1.5~(1.7^{+0.7}_{-0.5}) imes10^{-6}$	16 (19)
	Longitudinal	$3.9\;(4.6^{+2.0}_{-1.4})$	$1.2~(1.4^{+0.6}_{-0.4}) imes 10^{-6}$	13 (15)

$\mathcal{B}(Z \to J/\psi \gamma) < 1.4 \times 10^{-6}$

Search for $W^{\pm} \rightarrow \pi^{\pm} \pi^{\pm}$ 13 TeV, 77.3 fb

"Search for W boson decays to three charged pions" *Eur. Phys. Rev. Lett.* **122** (2019) 151802

$$\mathcal{O}(\mathcal{B}_{\rm SM}({\rm W}\to3\pi))\sim\mathcal{O}(\mathcal{B}_{\rm SM}({\rm Z}\to3\pi))$$

$$\Downarrow$$

$$10^{-8}\lesssim\mathcal{B}_{\rm SM}({\rm W}\to3\pi)\lesssim10^{-5}$$

$$\mathcal{B}(\tau^{\pm} \rightarrow \pi^{\pm} v_{\tau}) = 11\%$$

- 1. **Trigger on two** τ_h candidates with $p_T^{\tau} > 35$ GeV
- 2. Reconstruct π^{\pm} with hadrons-plus-strips algorithm

3. Estimate backgrounds using three data-driven methods

1. QCD multijet Invert isolation

2.
$$Z \rightarrow \ell^+ \ell^-$$
 (shape)
Invert e[±] discriminator

3. tt (shape) Identify a b-jet

Source	Uncertainty			CMS		13 TeV	
Luminosity	2.3-2.5%		2016				
Pion identification efficiency	15%	_	35.9 fb '				
Trigger efficiency	7-17%			t 1			
Pion energy scale	1.2%		2017 41.4 fb ⁻¹				
Pion misidentification rate	1%			-			
QCD background (estimation)	30%		Combined			Median expected	
$Z \rightarrow \ell^+ \ell^-$ background (theory)	2%		77.3 fb⁻¹			95% expected	10 ⁻⁶
W cross section (theory)	4%			0 0.5 1	1.5 2 95% ($\overset{2.5}{\text{CL on B}} \overset{3}{\text{W}} \overset{3}{\rightarrow} 3\pi$	

 $\mathcal{B}(W \rightarrow 3\pi) < 1.01 \times 10^{-6}$

W + charm production 8 TeV, 19.7 fb⁻¹

"Measurement of the associated production of a W boson and a charm quark at $\sqrt{s} = 8$ TeV" CMS-PAS-SMP-18-013, 2019

Secondary vertex channel

Purity: ~75%

SL channel					
Channel $N_{sel}(1-f_{bkg})$					
$W ightarrow e \nu$	43128 ± 451				
$W ightarrow \mu u$	24858 ± 315				

SV channel				
Channel $N_{sel}(1-f_{bkg})$				
$W ightarrow e \nu$	85555 ± 943			
$W ightarrow \mu u$	96782 ± 939			

Source	Uncertainty [%]
Lepton efficiency	0.7
Jet energy correction	0.9
Pileup	0.6
SL μ in jet efficiency	0.8
SV charge determination	1.0
Fragmentation and branching ratio	1.7
SV efficiency	2.2
Background subtraction	0.6
Monte Carlo statistics	0.7
PDF	1.0
Luminosity	2.6
Total	4.5

$\sigma(W + c + X) \mathcal{B}(W \rightarrow \ell v)$ = 116.3 ± 0.7(stat) ± 5.2(syst) pb

$$\frac{\sigma(W^+ + \bar{c})}{\sigma(W^- + c)} = 0.986 \pm 0.011(\text{stat}) \pm 0.013(\text{syst})$$

References

- 1. CMS Collaboration, "Measurements of differential Z boson production cross sections in pp collisions with CMS at $\sqrt{s} = 13$ TeV," CMS Physics Analysis Summary <u>CMS-PAS-SMP-17-010</u>, 2019.
- 2. CMS Collaboration, "Search for rare decays of Z and Higgs bosons to J/ ψ and a photon in proton-proton collisions at $\sqrt{s} = 13$ TeV," *Eur. Phys. J. C* **79** (2019) 94 [arXiv:1810.10056].
- CMS Collaboration, "Search for W boson decays to three charged pions," <u>Eur. Phys. Rev. Lett.</u> <u>122 (2019) 151802 [arXiv:1901.11201]</u>.
- 4. CMS Collaboration, "Measurement of the associated production of a W boson and a charm quark at $\sqrt{s} = 8$ TeV," CMS Physics Analysis Summary <u>CMS-PAS-SMP-18-013</u>, 2019.

Feynman diagrams for $Z \rightarrow \ell^+ \ell^-$ and W + charm: <u>Universität Zürich Physik-Institut</u> Feynman diagram and systematics table for W $\rightarrow 3\pi$; diagrams for W + charm: J. L. Rainbolt

Backup slides

Differential $Z \rightarrow \ell^+ \ell^-$ cross sections

Absolute

Resummed

Differential $Z \rightarrow \ell^+ \ell^-$ cross sections

 $p_{\rm T} > 30 {\rm ~GeV}$

Fixed order

Search for $Z \rightarrow J/\psi \gamma$

W + charm production

SL channel	W + c	$W + c\overline{c}$	W + udsg	W + b	DY	tŦ	single top	VV
$W ightarrow e \nu$	82.6%	0.2%	4.6%	0.4%	0.5%	8.4%	2.3%	1.0%
$W ightarrow \mu u$	77.7%	0.4%	3.2%	0.6%	6.9%	7.8%	2.5%	0.9%
SV channel	W + c	$W + c\overline{c}$	W + udsg	W+b	DY	tī	single top	VV
$W \rightarrow e \nu$	73.8%	0.5%	15.1%	0.7%	1.9%	3.8%	3.2%	1.0%
$W ightarrow \mu u$	74.5%	0.7%	16.0%	0.5%	0.6%	3.2%	3.5%	1.0%

SL channel						
Channel	$N_{sel}(1-f_{bkg})$	$\mathcal{C}(\%)$	$\sigma(W+c)$ [pb]			
$W \rightarrow e\nu$	43128 ± 451	1.916 ± 0.032	$114.3 \pm 1.2 \pm 8.1$			
$W ightarrow \mu u$	24858 ± 315	1.087 ± 0.024	$116.1 \pm 1.5 \pm 8.4$			
SV channel						
Channel	$N_{sel}(1-f_{bkg})$	$\mathcal{C}(\%)$	$\sigma(W+c)$ [pb]			
$W ightarrow e \nu$	85555 ± 943	3.681 ± 0.045	$118.0 \pm 1.3 \pm 5.9$			
$W ightarrow \mu u$	96782 ± 939	4.230 ± 0.047	$116.1 \pm 1.1 \pm 5.8$			

W + charm production

		SL channel	
Channel	$\sigma(W^+ + \overline{c}) [pb]$	$\sigma(W^- + c) [pb]$	$\sigma(W^+ + \overline{c}) / \sigma(W^- + c)$
$W \rightarrow e\nu$	$56.5 \pm 0.9 \pm 4.1$	$57.9 \pm 0.8 \pm 4.3$	$0.976 \pm 0.020 \pm 0.025$
$W ightarrow \mu \nu$	$56.9\pm1.1\pm4.3$	$59.1\pm1.0\pm4.5$	$0.963 \pm 0.025 \pm 0.030$
		SV channel	
Channel	$\sigma(W^+ + \overline{c}) [pb]$	$\sigma(W^- + c) [pb]$	$\sigma(W^+ + \overline{c}) / \sigma(W^- + c)$
$W \rightarrow e\nu$	$58.6 \pm 0.9 \pm 3.0$	$59.4 \pm 0.9 \pm 3.1$	$0.986 \pm 0.022 \pm 0.019$
$W ightarrow \mu \nu$	$57.7\pm0.8\pm3.0$	$57.3\pm0.8\pm2.9$	$1.007 \pm 0.020 \pm 0.019$