Photosensor Development for the IceCube Upgrade

Tyce DeYoung
DPF 2019
Northeastern University

50 m

IceCube Laboratory

Data is collected here and sent by satellite to the data warehouse at UW–Madison

1450 m

Digital Optical Module (DOM) 5,160 DOMs deployed in the ice

2450 m

Digital Optical Module

- 10" Hamamatsu PMT (super-bialkali in DeepCore)
- Onboard capture of PMT waveforms
 - Two sets of digitizers operating in ping-ping mode
 - 300 MSPS x 400 ns: custom ATWD chip
 - 40 MSPS x 6.4 µsec with fADC
 - Dead time < 1%
 - Dynamic range ~1000 p.e./10 ns
- Absolute timing < 2 ns RMS
- Noise rate ~600 Hz (underlying Poisson rate 260 Hz)

Next Step: the IceCube Upgrade

Seven new strings of multi-PMT mDOMs in the DeepCore region

Inter-string spacing of ~22 m

- Suite of new calibration devices to reduce detector-related systematics
- R&D for IceCube Gen2
- Technical constraints:
 - Radius (drill time)
 - Power (target <4 W/chan)

Form & Function

- Densely instrumented neutrino physics region within DeepCore
- Calibration light sources and detectors embedded in physics region and in deeper and shallower ice
 - Measure properties of "bulk" (undisturbed) and "hole" ice around DOMs
- R&D devices taking advantage of available connections

ICECUBE UPGRADE OPTICAL SENSORS

Updated IceCube DOM (pDOM)

IceCube DOM with revised electronics: commercial 250 MSPS ADC and modern FPGAs for data buffering and compression

Primarily for cross-calibration

Double-PMT Digital Optical Module (DEgg)

- Evolutionary design from the Chiba University group
- Two 8" Hamamatsu high-QE PMTs in elongated pressure vessel
 - Roughly 2x the effective photon collection area of an IceCube DOM (wavelength dependent)
- Common electronics with pDOM
- Available volume for calibration devices, etc.

Multi-PMT Digital Optical Module (mDOM)

• 24 x 3" PMTs in a 14" DOM with independent readouts

• KM3NeT-inspired, implemented in Germany

2.2x the photocathode area of IceCube DOMs

 Segmentation provides directional information for detected photons

Ice and hole calibration

Ability to mimic tau events

mDOM Readout

- Off-the-shelf circuits, readout power 3.4 W (plus comms, management)
- Continuously running, no wake-up, no dead time

mDOM Circuit Board Design

R&D: Wavelength Shifting Optical Module (WOM)

Two small (e.g. 3") PMTs reading out

a WLS-coated tube: 45% opt. eff.

R&D: Fiber Optical Module (FOM)

 Bare WLS fibers channel photons to a single small PMT (double-ended readout also possible)

Light collection with fibers (~\$2/m for 1 mm),
 cheaper than large PMTs

 No absorptive glass surrounding the main light collector – more UV collection

• Easy to transport, deploy in narrow hole

 Many fibers required for reasonable collection area, but could provide quasi-continuous sensitivity

Reduced timing precision (like WOM)

