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The High-Luminosity LHC

* The High-Luminosity LHC (HL-LHC) is expected to achieve luminosities up to 5 x 1034 cm-2 s
(7.5 x 1034 cm-2 s in ultimate performance scenario):

— Pileup at the level of 140-200 interactions per bunch crossing

* Great opportunities for physics, but very challenging for data analysis

* How do we optimize CMS to ensure we get the most out of this data?




Level 1 Track Trigger

* Providing tracks to the Level 1 (L1) trigger is a key part
of the strategy for CMS Phase 2:

Helps mitigate the effects of pileup at L1

Improves the measurement of objects with tracks (e.g.,

Opens up the possibility for new kinds of triggers (e.g.,
displaced or disappearing tracks)
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Track Trigger Algorithm

* Historically, two all-FPGA algorithms have been developed:

- Tracklet

(——
Road Search  —pp» Linearized x2 Fit
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— Time-Multiplexed Track Finder (TMTT)
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e Similar efficiencies and resolutions for both

* Technical demonstrations in 2016 proved the feasibility of both approaches



Track Trigger Algorithm

* Current focusis on a hybrid of the two:
— Combines most sophisticated parts of both algorithms

* The following slides give an outline of this hybrid algorithm
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* Track finding starts with track stubs

* Stubs formed from two types of p; modules

* Two-sided modules allows for front-end p;
discrimination:

— Stubs with too low of p; are rejected

- Data reduction factor of 10-100
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Top sensor: 2x960 strips, 2.4 cm long, 100
pum pitch

Bottom sensor: 32x960 pixels, 1.5 mm X 100
pm

Strip-strip (25) modules

Both sensors are strips
2x1016 strips, 5 cm long, 90 pm pitch
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Parallelization

* Track-finding will be parallelized, both in time and space
* Time multiplexed with a factor of 18 in the current design

* Detector divided into nine “hourglass” sectors:

— Hourglass shape prevents tracks above given p; threshold from entering more than one sector
= no cross-sector communication of tracks needed

— Critical radius tuned to minimize overlap of stubs
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Seeds

* Tracks are seeded with pairs of stubsin = . T I
adjacent layers: ool — ::” ”” ”” “” ::“ ..
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pr> 2 GeV

* Only stub pairs consistent with p; >2 GeV are kept:

pr <2 GeV

" E‘.l‘.‘.’.;j‘_‘.i'...---- — Tracker layers coursely segmented into virtual modules
(VM) (4 or 8 per layer per sector)
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— Only VM pairs consistent with p; threshold are even
connected in the firmware



Matches in other layers/disks

* From these seeds, track parameters and projections to other layers/disks are
calculated:

— Assume tracks originate from beamline

* The projections are used to calculate residuals and match stubs in additional

layers/disks:
— Thisyields full tracks that are the inputs to the final track fit
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Duplicate removal

* The pattern recognition naturally produces
duplicate tracks for a given charged particle:

— Most come from redundancies in the seeds:

* e.g.,acentral charged particle will usually be seeded
three times: L1L2, L3L4, L5L6

— Some come from nearby stubs in a given layer
yielding very similar tracks

* These have to be removed before track fitting:

— Currently merge any tracks that share =4 stubs, but
this is a very active area of development
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Kalman filter

* The final fit of the tracks is done with a Kalman filter:

- Equivalent to what is currently done in the offline tracking of CMS
— Starts with coarse tracklet parameters from the seed

— Adds stubs one by one, updating the helix parameters with greater and greater precision
* By default, there is a beamline constraint and four track parameters are fit:

— Can easily remove this constraint and also fit for transverse impact parameter (d,)

*
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Performance

* Recently merged emulation tracklet TMTT
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— Hybrid expected to be at
least as good
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Performance

tracklet TMTT
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Firmware Status & XILINX. §

* For firmware development, we have chosen Vivado HLS:

— Allows FPGA designs to be specified in C++ instead of an HDL like Verilog or VHDL

— Enables more rapid development, the result is more maintainable, and new ideas can
be prototyped more easily

* Not without its hiccups though:

— HLS can generate incorrect RTL; imperative to verify (cosimulation)

— Dependencies between read/write operations or between loop iterations can make
pipelining tricky

— Resource utilization and timing estimates from HLS can sometimes be quite inaccurate
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Firmware Status

* There are nine processing steps in the current design,
each of which will have multiple instances on the FPGA:

— Memories used to communicate between steps
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Firmware Status

InputRouter

* There are nine processing steps in the current design, - -

VMRouter

each of which will have multiple instances on the FPGA: -

TrackletEngine

L ——

— Memories used to communicate between steps - —

TrackletCalculator

L e

* Nearly all have one instance written and tested to be —

functionally correct: = -

MatchEngine
— Different instances generated using C++ template - -

MatchCalculator

programming - -

— ——y

KalmanFilter

L e
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Firmware Status

— S

InputRouter

L —

* There are nine processing steps in the current design,
each of which will have multiple instances on the FPGA:

VMRouter

TrackletEngine

— Memories used to communicate between steps

TrackletCalculator

* Nearly all have one instance written and tested to be
functionally correct:

ProjectionRouter

MatchEngine
— Different instances generated using C++ template

programming

MatchCalculator

* Nearly all of these have achieved desired pipelining

KalmanFilter
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Firmware Status

— S

InputRouter
There are nine processing steps in the current design, each of which will .
have multiple instances on the FPGA: S
— Memories used to communicate between steps TrackletEngine

Nearly all have one instance written and tested to be functionally correct: tracietcalculator \/*

— Different instances generated using C++ template programming ProjectionRouter ./~

Nearly all of these have achieved desired pipelining X
MatchEngine

About half have been fully verified with C/RTL cosimulation
MatchCalculator ‘/

Goal is to have a full chain of modules ready for integration tests at CERN
starting in September/October

KalmanFilter \/
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Lo U on

* Acommon L1 tracking algorithm for CMS Phase 2 is finally emerging: o o S tese2 multon Py e SO P B
- Based the most sophisticated aspects of two proven all-FPGA approaches: tracklet and TMTT * j : nee |1 s
e Development of the firmware, written in Vivado HLS, is well underway: i "
— About half of the processing steps have fully functioning modules written 2 ‘ -
* R&D on the algorithm itself is also ongoing, e.g., extending the algorithm to include . : N
o by

displaced tracks: = p[eew u
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— Challenging even at the front-end, as stubs from displaced tracks have low efficiency in L1
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— Has the potential to benefit electron tracking, as well as novel triggers targeting BSM physics

Brem in the inner tracker:
e With PV constraint: no track at all
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