
Level 1 Track Finder at CMS
Andrew Hart for the CMS Collaboration
Rutgers, The State University of New Jersey



2

The High-Luminosity LHC
● The High-Luminosity LHC (HL-LHC) is expected to achieve luminosities up to 5 × 1034 cm-2 s-1 

(7.5 × 1034 cm-2 s-1 in ultimate performance scenario):
– Pileup at the level of 140-200 interactions per bunch crossing

● Great opportunities for physics, but very challenging for data analysis
● How do we optimize CMS to ensure we get the most out of this data?



3

Level 1 Track Trigger
● Providing tracks to the Level 1 (L1) trigger is a key part 

of the strategy for CMS Phase 2:
– Helps mitigate the effects of pileup at L1
– Improves the measurement of objects with tracks (e.g., 

leptons)
– Opens up the possibility for new kinds of triggers (e.g., 

displaced or disappearing tracks)

CMS-PAS-FTR-18-018



4

Track Trigger Algorithm
● Historically, two all-FPGA algorithms have been developed:

– Tracklet

– Time-Multiplexed Track Finder (TMTT)

● Similar efficiencies and resolutions for both
● Technical demonstrations in 2016 proved the feasibility of both approaches

Road Search Linearized χ2 Fit

Hough Transform Kalman Filter



5

Track Trigger Algorithm
● Current focus is on a hybrid of the two:

– Combines most sophisticated parts of both algorithms
● The following slides give an outline of this hybrid algorithm

Hough Transform

Road Search

Kalman Filter

Linearized χ2



6

Track stubs
● Track finding starts with track stubs
● Stubs formed from two types of pT modules
● Two-sided modules allows for front-end pT 

discrimination:
– Stubs with too low of pT are rejected
– Data reduction factor of 10-100



7

Parallelization
● Track-finding will be parallelized, both in time and space
● Time multiplexed with a factor of 18 in the current design
● Detector divided into nine “hourglass” sectors:

– Hourglass shape prevents tracks above given pT threshold from entering more than one sector 
 no cross-sector communication of tracks needed⇒

– Critical radius tuned to minimize overlap of stubs



8

Seeds
● Tracks are seeded with pairs of stubs in 

adjacent layers:
– Barrel only: L1L2, L3L4, L5L6
– Disk only: D1D2, D3D4
– Overlap: L1D1, L2D1

● Only stub pairs consistent with pT > 2 GeV are kept:
– Tracker layers coursely segmented into virtual modules 

(VM) (4 or 8 per layer per sector)
– Only VM pairs consistent with pT threshold are even 

connected in the firmware



9

Matches in other layers/disks
● From these seeds, track parameters and projections to other layers/disks are 

calculated:
– Assume tracks originate from beamline

● The projections are used to calculate residuals and match stubs in additional 
layers/disks:
– This yields full tracks that are the inputs to the final track fit



10

Duplicate removal
● The pattern recognition naturally produces 

duplicate tracks for a given charged particle:
– Most come from redundancies in the seeds:

● e.g., a central charged particle will usually be seeded 
three times: L1L2, L3L4, L5L6

– Some come from nearby stubs in a given layer 
yielding very similar tracks

● These have to be removed before track fitting:
– Currently merge any tracks that share ≥4 stubs, but 

this is a very active area of development



11

Kalman filter
● The final fit of the tracks is done with a Kalman filter:

– Equivalent to what is currently done in the offline tracking of CMS
– Starts with coarse tracklet parameters from the seed
– Adds stubs one by one, updating the helix parameters with greater and greater precision

● By default, there is a beamline constraint and four track parameters are fit:
– Can easily remove this constraint and also fit for transverse impact parameter (d0)



12

Performance

● Recently merged emulation 
infrastructures of tracklet 
and TMTT approaches

● Efficiencies and resolutions 
of the two approaches are 
very comparable:
– Hybrid expected to be at 

least as good

tracklet TMTT



13

Performance

● Recently merged emulation 
infrastructures of tracklet 
and TMTT approaches

● Efficiencies and resolutions 
of the two approaches are 
very comparable:
– Hybrid expected to be at 

least as good

tracklet TMTT



14

Firmware Status
● For firmware development, we have chosen Vivado HLS:

– Allows FPGA designs to be specified in C++ instead of an HDL like Verilog or VHDL
– Enables more rapid development, the result is more maintainable, and new ideas can 

be prototyped more easily
● Not without its hiccups though:

– HLS can generate incorrect RTL; imperative to verify (cosimulation)
– Dependencies between read/write operations or between loop iterations can make 

pipelining tricky
– Resource utilization and timing estimates from HLS can sometimes be quite inaccurate



15

Firmware Status
● There are nine processing steps in the current design, 

each of which will have multiple instances on the FPGA:
– Memories used to communicate between steps

InputRouter

VMRouter

TrackletEngine

TrackletCalculator

ProjectionRouter

MatchEngine

MatchCalculator

DuplicateRemoval

KalmanFilter



16

Firmware Status
● There are nine processing steps in the current design, 

each of which will have multiple instances on the FPGA:
– Memories used to communicate between steps

● Nearly all have one instance written and tested to be 
functionally correct:
– Different instances generated using C++ template 

programming

InputRouter

VMRouter

TrackletEngine

TrackletCalculator

ProjectionRouter

MatchEngine

MatchCalculator

DuplicateRemoval

KalmanFilter



17

Firmware Status
● There are nine processing steps in the current design, 

each of which will have multiple instances on the FPGA:
– Memories used to communicate between steps

● Nearly all have one instance written and tested to be 
functionally correct:
– Different instances generated using C++ template 

programming
● Nearly all of these have achieved desired pipelining

InputRouter

VMRouter

TrackletEngine

TrackletCalculator

ProjectionRouter

MatchEngine

MatchCalculator

DuplicateRemoval

KalmanFilter



18

Firmware Status
● There are nine processing steps in the current design, each of which will 

have multiple instances on the FPGA:
– Memories used to communicate between steps

● Nearly all have one instance written and tested to be functionally correct:
– Different instances generated using C++ template programming

● Nearly all of these have achieved desired pipelining
● About half have been fully verified with C/RTL cosimulation
● Goal is to have a full chain of modules ready for integration tests at CERN 

starting in September/October

InputRouter

VMRouter

TrackletEngine

TrackletCalculator

ProjectionRouter

MatchEngine

MatchCalculator

DuplicateRemoval

KalmanFilter



19

Conclusion
● A common L1 tracking algorithm for CMS Phase 2 is finally emerging:

– Based the most sophisticated aspects of two proven all-FPGA approaches: tracklet and TMTT
● Development of the firmware, written in Vivado HLS, is well underway:

– About half of the processing steps have fully functioning modules written
● R&D on the algorithm itself is also ongoing, e.g., extending the algorithm to include 

displaced tracks:
– Challenging even at the front-end, as stubs from displaced tracks have low efficiency in L1
– Has the potential to benefit electron tracking, as well as novel triggers targeting BSM physics

L1

L2


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

