Upgrade of the CMS electromagnetic calorimeter barrel readout electronics for the High-Luminosity LHC

The CMS EM Barrel Calorimeter

Lead Tungstate Crystals

Assemblies of modules and supermodule

Assembly with APD readout

Installation of 36 supermodules w/in CMS 3.8T Solenoid

Essential for standard model, precision measurements, and new physics search programs

High Luminosity LHC

×10 larger data set for physics (wrt Run 3)

	LHC	HL-LHC	
E =	7-14	14	TeV
$\mathcal{L}_{peak} =$	2	5-7.5	$\cdot 10^{34} { m cm}^{-2} { m s}^{-1}$
$PU_{peak} =$	40-60	150-200	
$\int \mathcal{L} =$	\geq 50	250-320	fb ⁻¹ /year
$\int {\cal L} =$	300-500	3000-4000	fb ⁻¹ total

- A challenging environment for physics and detector components
- Numerous preparations underway for running in 2026 and beyond

Physics with ECAL at HL-LHC

LHC => HL-LHC

- Determine Higgs couplings ≤10% level, differential meas.
- Higgs self-coupling
- New physics via EW channels, Jets/MET, ...

Precision energy measurement / resolution required

However, high luminosity running results in many interaction vertices (pileup).

Choosing an incorrect vertex reduces resolution for event reconstruction

- Precision timing can be used to reduce pileup effects at high lumi, eg:
- ECAL timing for photon pointing
- "4D" tracking to improve vertex localization in time and space (see talk by Si Xie)

- $H \rightarrow \gamma \gamma$ mass resolution for different vertex efficiency scenarios
- no precise timing
- +precise timing in e.m. calorimetry
- +precise timing for MIP (dedicated detector)

Performance of detector components at HL-LHC

- Crystal transparency affected by radiation damage
 - Transparency loss in barrel < 50% over HL-LHC running => no need for replacement*
- APD dark current will increase with integrated luminosity and become a dominant contribution to σ_{r}
 - x10 more noise after 3000/fb

Bob Hirosky

5

- Dark current depends on temperature
 - Mitigate by cooling the calorimeter to 9°C (currently at 18°C)
 - Will also enhance the light yield of $PbWO_4$ by $\approx 20\%$ ($\Delta S/S = -2\%/^{\circ}C$)
- Further suppressed by reducing amplifier shaping time

*ECAL (+ HCAL) endcaps need complete replacement. See high granularity, silicon/scintillator based, sampling calorimeter talk by Maral Alyari

Performance of detector components at HL-LHC

- Crystal transparency affected by radiation damage
 - Transparency loss in barrel < 50% over HL-LHC running => no need for replacement
- APD dark current will increase with integrated luminosity and become a dominant contribution to σ_{r}
 - x10 more noise after 3000/fb
- Dark current depends on temperature
 - Mitigate by cooling the calorimeter to 9°C (currently at 18°C)
 - Will also enhance the light yield of PbWO₄ by \approx 20% (Δ S/S = -2%/°C)
- Further suppressed by reducing amplifier shaping time

• Will need improved discrimination of direct ionization signals (spikes), associated with particles striking the APDs and rarely interacting to produce secondaries

Upgrades for HL-LHC

- Major requirement: larger trigger rates and latencies to exploit higher luminosity
 - Level 1 rate 750 kHz, 12.5 μs latency (currently 100 kHz, 4 μs)
 - spike mitigation mandatory for L1 rate
- Front-end and off-detector electronics need replacement
- Requires removal, refurbishment, re-installation, re-commissioning of 36 EB supermodules
- Opportunity to maintain and enhance performance goals w.r.t. Phase 1:
 - same excellent energy resolution
 - fast response for pileup mitigation and noise reduction
 - timing resolution and improved granularity at trigger

Complete replacement of front end (on detector) and off detector electronics

Very Front End Upgrade

The readout system upgrades satisfy new requirements for: bandwidth, conversion and transmission rates and radiation tolerance

2 new custom (radiation hard) ASICs for the VFE upgrade

• CATIA ASIC: analog ASIC

- Trans-Impedance Amplifier (TIA) architecture, 2x bandwidth of current MGPA
- Energy signals dynamic range: 50 MeV \rightarrow 2 TeV
- 2 outputs, gain values: (x1, x10), with (50, 500) MeV LSB
- LITE-DTU ASIC: digital signal processing ASIC
 - ADC: resolution: 12-bit, sampling frequency: 160 MS/s
 - Lossless data compression and transmission unit
- Also low-voltage regulator card (LVR): 1.2, 2.5 V
 - Point-of-load FEAST DC/DC converters

TSMC 130 nm

CMOS 65 nm

Front End Upgrade

The readout system upgrades satisfy new requirements for: bandwidth, conversion and transmission rates and radiation tolerance

Front End (FE) cars

- FE: fast optical links to stream all crystal data off-detector at 40 MHz
 - IpGBT/VL+ components (4×10.24 Gb/s data links, 1×2.56 Gb/s control link)
 - eLink serial interface to ADC, clock and i2C interface
 - ~ 25x increase in bandwidth from legacy system
- Sufficient bandwidth to move all data processing off detector: noise suppression, pulse reconstruction, trigger primitives generation, data buffering, etc moved to powerful FPGAs off detector)

Tests of first VFE prototypes

Staged approach: discrete components first, minimal prototype with TIA only, full prototype (TIA + i2C + test pulse), full prototype in final package
 Commercial ADC for 1st tests, data transmission units via custom adapter card

- First characterization in lab with laser light + crystal + APDs
- Extensive tests performed at the CERN H4/H2 beam line on a 5×5 crystal matrix
 H4: very pure electron beam,
 - H4: very pure electron beam, Δp/p =0.5% with 20
 - H2: pion beam for APD direct ionization
 - Plastic fiber hodoscopes for position measurement
 - 2 Micro Channel Plate devices

10

(1.2 cm diameter, $<1 X_0$) for time reference

Tests of first VFE prototypes

- 2016: discrete component TIA + DRS4 readout at 5 GS/s
 - different sampling rates emulated offline
 - 160 MHz optimal, at lower frequencies dependence on the phase between APD signal and ADC clock
- 2018: first prototype ASIC TIA chip + commercial ADC at 160 MHz
 - Realistic noise performance
 - Energy resolution matches legacy electronics
 - Time resolution matches target (<30 ps @ 50 GeV)

Results shown for 18°C (Data also taken at 9°C)

Impact of upgrade on trigger

- Target for spike discrimination: 1 kHz L1 rate for $E_{T} > 5$ GeV
- With faster shaping and 160 MHz sampling frequency => strong pulse shape discrimination for spikes and scintillation signals

- Single crystal level available at L1 (×25 better granularity than legacy system)
 - More sophisticated trigger algorithms
 - Improve resolution, PU/background rejection
 - Pulse shape method can be combined with topology for spike suppression

Off detector electronics

- Barrel Calorimeter Processor
 - ATCA form factor
 - Main processing by two powerful Xilinx Kintex FPGAs
 - Embedded LINUX and real time OS systems for board monitoring, configuration, and control

BCP functions

- Concentrate detector raw data
- Pulse reconstruction and noise suppression, build trigger primitives and transmit them to L1 Trigger
- Receive the LHC clock and distribute with high precision to the on detector electronics.
- Buffer and send event data to DAQ upon L1 Accept
- Handle slow-control of on-detector electronics via IpGBT interfaces

108 boards for ECAL Barrel

13

Clock distribution

- The limiting factor in timing resolution with the current ECAL electronics (optimized for energy resolution only!)
- A well implemented back-end and FE capable of precision clock distribution should deliver ≈10 ps RMS (random) jitter
- Dedicated studies on the currently available GBTx serial link
 - Preliminary results indicate better performance with prototype of new IpGBT
- Alternate clock distribution schemes under evaluation also capable of satisfying jitter requirements

Example: GBTx chip tested with a dedicated board

15 📰 Bob Hirosky U. Virginia

Summary

- The HL-LHC phase will bring exciting and challenging opportunities for precision measurements and new physics searches
- Motivated by trigger and physics requirements, redesigned BCAL electronics will provide:
 - equivalent energy resolution to Phase 1/legacy system
 - precise timing for electrons and photons
 - mitigation of pileup effects
 - mitigation of increased APD noise
 - anomalous signal filtering at L1 trigger
 - 25x higher granularity at L1 trigger
- With these upgrades, the CMS ECAL barrel will continue its excellent performance throughout HL-LHC

