

CMS Trigger in Phase-2

Chad Freer On Behalf of the CMS Collaboration

Phase-2 Changes

Phase-2

New Additions to Phase-2 L1 trigger:

- 1. Tracker will be incorporated at L1 level. (~5 μ s latency)
- 2. New High granularity calorimeter in forward region (HGCAL) will be added to L1
- 3. The muon endcap will incorporate several new detectors into the L1 Muon Track Finder
 - iRPC \rightarrow RPC TPG
 - GEM \rightarrow GEM TPG
 - ME0 \rightarrow GEM TPG
- 4. Correlator Trigger to implement sophisticated reconstruction algorithms like particle flow

2S/PS modules:

- pT discrimination in FE electronics through hit correlations allows for triggering at L1 level
- Modules made of 2 closely-spaced silicon sensors.
- Create stubs associated with particles of 2 GeV or greater
- At <PU>=200, approximately 15,000 stubs will be sent to the backend Track Finder (TF)

Backend Track Finder:

- Measured bend between modules gives rough pT measurement for tracks
- Enormous amount of data...
- However, most tracks produced have very soft pT
- 97% (99%) of tracks produced have pT<2GeV (pT<3GeV)
- At <PU>=200, an average of 200 tracks will be sent to L1 trigger correlator

ECAL and HCAL at L1

Calo

Electromagnetic Barrel Calorimeter:

- ECAL barrel trigger and readout electronics will be upgraded
- Phase-1 TP generator was located ondetector but will be moved off-detector
- Phase-2 will have single crystal granularity with 160 MHz sampling frequency
- Allows for more sophisticated clustering algorithms (under study)
- Re-optimization of spike killer algorithms (Using timing/pulse shape)

Hadron Barrel and Forward Calorimeters:

- Replacing back-end electronics and partial replacement of front layer scintillator tiles
- HCAL Towers same as Phase-1 + Depth Information (7 total)
- HF Towers same as Phase-1
- Additional feature bits available with upgraded HBHE and HF
- Ongoing studies for TP reconstructing schemes to reduce PU

Geometry and Readout

HGCAL

HGCAL Geometry:

- Geometry from TDR (2018) https://cds.cern.ch/record/2293646/files/CMS-TDR-019.pdf
- Sampling calorimeter
- Mix of Silicon (Green) and Scintillator (Blue) modules
- Will have 52 sensitive layers
 - 28 in the electromagnetic section (half used for trigger)
 - 24 in hadronic section (All used for trigger)

HGCAL L1 Readout:

- Large amount of data associated with 3D clusters
- Simple E_T cuts can reduce rate to add more cluster information
 - 1. Transverse energy
 - 2. Subdetector section fractions
 - 3. Shower position
 - 4. Quality information
- Optional information
 - 1. Cluster shape
 - 2. Transvers energy interpreted for electromagnetic shower
 - 3. Subclusters

Muon Triggers

Muons

Muon Track Finders at L1:

Split into 3 different subsystems based on geometry and detector type

Barrel: DT and RPC.

Overlap: Complicated geometry utilizing DT, RPC and CSC.

Endcap: CSC and RPC plus new GEM, MEO and iRPC detectors. New detectors needed to help with higher PU and punch through in the forward region.

Phase-2 Barrel and RPC

Muons

Studies for Phase-2 BMTF:

- Kalman filter algorithm fully commissioned by end of 2018
- Iterative track building algorithm starting from outer chamber and propagating to inner stations (shown in Backup)
- Can be used to trigger on displaced particles
- Tracks can be unconstrained or constrained to tracker tracks

Studies for HSCP using RPC timing:

- Slow moving particles can be identified by time-offlight measurements
- Upgrade to RPC backend electronics will provide increased time resolution (from 25 ns to ~1.5 ns)
- HSCPs can be identified using linear fit of RPC hits in space-time (slope provides measurement β=v/c)
- Clear improvement in the resolution of the β measurement
- Clear improvement is observed in efficiency for slow moving particles β~0.5c

Phase-2 EMTF

Phase-2 EMTF:

- Incorporates the new muon detectors (ME0, GE1/1 and GE2/1 shown here)
- Detectors provide more bend information to mitigate PU effects
- Sharper turn-on while reducing trigger rates

Ongoing Studies:

- Will also add iRPCs (not shown here)
- Correlating tracker tracks to endcap tracks/stubs reduces rate significantly further
- pT assignment using a NN instead of LUTs (incorporating all Phase-2 detectors)

L1 Menu

L1 Physics Menu based on the Run 2 Menu:

- Thresholds mostly consistent with Run 2 values
- L1 Menu studied for multiple PU conditions
 - 1. <PU>=140
 - 2. <PU>=200
 - 3. <PU>=200 rate * 1.3 (incomplete menu)
- Total rate below 500 kHz (390 kHz) out of maximum of 750 kHz
- Changes to a few thresholds but most are maintained with help of tracker information
- Will continue to integrate algorithm updates and re-evaluate rates and efficiencies
- Will add several trigger paths
- Preparing update highlighting HL-LHC physics signals

Proposed L1 Menu

$L = 5.6 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}, \langle PU \rangle = 140$	L1 trigger		
$L = 8.0 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}, \langle PU \rangle = 200$	with L1 tracks		
			Offline
Trigger	Rate		threshold(s)
algorithm	[kHz]		[GeV]
$\langle PU \rangle$	140	200	
Single Mu (tk)	14	27	18
Double Mu (tk)	1.1	1.2	14 10
Ele^{\star} (iso tk) + Mu (tk)	0.7	0.2	19 10.5
Single Ele* (tk)	16	38	31
Single iso Ele* (tk)	13	27	27
Single γ^* (tk-iso)	31	19	31
Ele* (iso tk) + e/γ^*	11	7.3	22 16
Double γ^* (tk-iso)	17	5	22 16
Single Tau (tk)	13	38	88
Tau (tk) + Tau	32	55	56 56
Ele^{\star} (iso tk) + Tau	7.4	23	19 50
Tau (tk) + Mu (tk)	5.4	6	45 14
Single Jet	42	69	173
Double Jet (tk)	26	43	2@136
Quad Jet (tk)	12	45	4@72
Single ele* (tk) + Jet	15	15	23 66
Single Mu (tk) + Jet	8.8	12	16 66
Single ele [*] (tk) + $H_{\rm T}^{\rm miss}$ (tk)	10	45	23 95
Single Mu (tk) + $H_{\rm T}^{\rm miss}$ (tk)	2.7	8	16 95
$H_{\rm T}$ (tk)	13	24	350
Rate for above triggers*	180	305	
Est. rate (full EG eta range)		390	
Est. total L1 menu rate $(\times 1.3)$	260	500	

Preparation for HLT at Phase-2

HLT menu preparation:

- 2019: Prepare basic menu based on simple HLT algorithms and the Phase-2 L1T menu.
- 2020: Update the HLT menu for simplified menu covering a few representative physics channels.
- Prepare tighter versions of the menu to have several reduced-rate options.

HLT reconstruction:

- Adapt the developing offline reconstruction code to the online environment.
- Extrapolate the resource requirements: using high pileup data and Phase-2 simulations
- Estimate impact from upgraded/new detectors (MTD, HGCAL, L1 tracking, etc).

Heterogeneous computing:

- Adapt some reconstruction algorithms (calorimeters, pixel tracking) to the use of accelerators (GPUs or FPGAs).
- Pixel tracking results: significantly larger throughput using GPUs (bottom plot); similar efficiency and better pT resolution using updated algorithms (top plots).

CMS Preliminary 2018 data 13 TeV

L1 trigger for Phase-2 compared to Phase-1:

- Additional detectors at the L1 trigger level:
 - Tracker 1 Correlator Trigger [1] HGCAL
 - 2. ME0 3.
 - GEM
 - Endcap Muon Track Finder [2]
- 5. iRPC Increased latency to 12.5 μ s (~3 times) ٠
- Increased rate to 750 kHz (7.5 times)
- Reworking algorithms across L1 to utilize higher granularity/timing resolution associated with ٠ upgraded electronics and to take advantage of new detectors

Summary

- Correlator Trigger to incorporate tracker tracks into L1 [1] ٠
- L1 Menu set with similar thresholds as Run 2 menu ٠
- HLT menu will follow based on Run 2 menu ٠
- HLT reconstruction algorithms have been ported to GPUs for a heterogeneous HLT farm [3]

	Phase-1	Phase-2
L1 Rate	100 kHz	750 kHz
Latency	3.8 µs	12.5 µs
Bandwidth	1.8 Tb/s	50 Tb/s

5/14/19

4

FND

Backup

END

CMS

What is the Trigger System?

Backup

Level 1 Trigger (L1T):

- Creates trigger primitives out of basic detector information.
- Creates local objects (primitive electrons, photons, jets and muons)
- Reduces event rate from ~40 MHz to ~ 100 kHz
- Sends events of interest to high level trigger

High Level Trigger (HLT):

- PC farm (~1000 units) using reconstruction software and event filters
- Looks for events likely containing "interesting" physics
- Large HLT Menu to look at a wide range of physics
- Reduces event rate from ~100 kHz to ~ 200 Hz

All done online (no chance to get events back!) Data Rate: $\sim 10^9$ Hz W \rightarrow Iv Rate: ~ 100 Hz

2D+3D Clustering

2D Clustering:

- Trigger cells are the sums of sensor cells
- 3*3 for small cells and 2*2 for large cells
- 48 trigger cells/module
- Layer-by-layer 2D clustering
- Cluster TCs around seed TC (>5mip_T) [1]

3D Clustering (TC clustering):

- Seeds and TCs in (x/z,y/z) plane [2]
- TC association to the closest seed within given distance
- Distance depends on the layer
- Assumed maximum of 400 clusters * 200 bits [3]
- Between 128 and 416 bits per cluster (200 assumed)

Kalman Filter:

- Iterative track finding algorithm.
- Combines Stub measurements with predictions based on phi, bend angle and curvature
- Starts from the outermost muon station and propagates inwards, updating at each station
- Provides both vertec constrained and vertex unconstrained measurements
- Can trigger on displaced particles
- Fully commissioned by the end of 2018 data taking

HL-LHC Plans

HL-LHC

Example Workflow

Backup

5/14/19

Chad Freer

HLT Data Stream

Backup

