# ATLAS Run-II Luminosity Measurements

R Rosten on behalf of the ATLAS Collaboration 29<sup>th</sup> July 2019



## ATLAS Run-II Luminosity

- Total Run-II pp luminosity at  $\sqrt{s}=13$  TeV:  $139~{\rm fb^{-1}}$  with a 1.7% uncertainty
- Dominant uncertainty in many cross-section analyses
- Primary luminosity detector must be stable over wide ranges of luminosity and pileup, slow to age, and sensitive at 25ns bunchcrossings

$$\mathcal{L}_{ ext{LUCID}}$$
 
$$\mathcal{L}_{ ext{ATLAS}} = f_{ ext{LHC}} \frac{n_1 n_2}{2\pi \Sigma_x \Sigma_y}$$
 
$$R_{ ext{in}} = \sigma_{ ext{in}} \mathcal{L}$$



#### LUCID-2

• LUCID (LUminosity Cherenkov Integrating Detector): Provides real-time measurement of luminosity at any number of interactions per LHC bunch crossing  $(\mu)$ 

- Primary luminosity detector in ATLAS from 2015+
- 2\*4\*4 IP-pointing PMTs with small acceptance (Cherenkov radiation from quartz window sufficient) to cope with high occupancy
- Fast read-out electronics to cope with 25 ns bunch spacing
- Radioactive Bi-207 deposited on quartz window allows for continuous monitoring of PMT gains

4 sets of 4 Photomultipliers Cherenkov medium: Quartz windows Gain monitoring: Bi-207 sources Beampipe Carbon fiber support 17 m to ATLAS point

### Other Systems

#### **Tracking**

Uses track reconstruction in the ID (Si only) in randomly triggered events TDAQ limited (200 Hz in physics, up to 45 kHz in VdM)  $\langle \mu \rangle \propto N_{Tracks}$ 

#### <u>Tile</u>

Diverts ~1% of PMT current and integrates over O(10) ms Sensitive over a range of luminosities  $L \propto i_{PMT}$ 

Long-term stability Calibration transfer



#### **EMEC & FCal**

Read out LAr gap HV currents with an integration time O(1) s Use of HV current bypasses trigger limitations  $L \propto i_{HV}$ 

Long-term stability

#### Bunch-by-bunch algorithms:

Capable of measuring the luminosity in a single bunch via hit or object counting

#### • Flux algorithms:

Average signal over a multi-BC time range to determine average luminosity

## Luminosity Calibration Procedure: Overview

Use low luminosity van-der-Meer (VdM) scans to determine absolute luminosity of each colliding bunch as related to bunch intensity  $(n_1n_2)$  by measuring beam overlap integral  $(\Sigma_{\chi}\Sigma_{y})$ 

Use linearity of track counting luminosity measurement to extrapolate VdM calibration to "normal" LHC running conditions, i.e. the calibration transfer  $\mu{\sim}0.5\ \rightarrow\mu{\sim}50$ 

$$\mathcal{L}_{bunch} = f_{\text{LHC}} \frac{n_1 n_2}{2\pi \Sigma_{\chi} \Sigma_{y}}$$

LUCID-2 measurements relate visible interactions per bunch crossing  $(\mu_{vis})$  and cross section  $(\sigma_{vis})$  PMT gain stability monitored by Bi-207 calibration

$$\mu_{\rm vis} = -(1 - P_{\rm HIT})$$

$$\mathcal{L} = f_{\text{LHC}} \frac{\mu_{vis}}{\sigma_{vis}}$$

# Absolute Calibration – van der Meer (vdM) Scans

- vdM scans carried out with very low luminosity and isolated bunches
  - Multiple scans allow for evaluation of scan-to-scan reproducibility
  - Off-axis scans allow for evaluation of non-factorization
- Reference luminosity for calibrating LUCID comes from beam parameters
- O(10<sup>-4</sup>) corrections account for Bi-207 and beamgas interactions







$$\mathcal{L} = f_{\text{LHC}} \frac{n_1 n_2}{2\pi \Sigma_x \Sigma_y}$$

$$\sigma_{vis} \neq f_{\text{LHC}} \frac{\mu_{vis}}{\mathcal{L}}$$

#### Calibration Transfer

- LUCID measurements sensitive pileup and bunch train running → calibration from VdM run results in an overestimate of luminosity in physics running conditions
- Correction needed for  $\mu_{vis}$  at high luminosities from track counting (recall robustness against pileup and sensitivity over large luminosity range)
- Uncertainty on calibration transfer from comparison of track counting and Tile luminosity measurements in same pairs of runs





## Long-Term Stability

- Long-term stability uncertainty comes from a comparison of the luminosity measured by other luminometers to LUCID-2
- Reference run chosen for which all systems' luminosities are normalized to LUCID (red arrow)



# Long-Term Stability

- Long-term stability uncertainty comes from a comparison of the luminosity measured by other luminometers to LUCID-2
- Reference run chosen for which all systems' luminosities are normalized to LUCID (red arrow)



Date in 2017

## **Uncertainty Contributions**

Systematic is *partially* correlated between years

Systematic is *fully* correlated between years

| Data sample                                   | 2015+16 | 2017 | 2018 | Comb. |
|-----------------------------------------------|---------|------|------|-------|
| Integrated luminosity (fb <sup>-1</sup> )     | 36.2    | 44.3 | 58.5 | 139.0 |
| Total uncertainty $(fb^{-1})$                 | 0.8     | 1.0  | 1.2  | 2.4   |
| Uncertainty contributions (%):                |         |      |      |       |
| DCCT calibration <sup>†</sup>                 | 0.2     | 0.2  | 0.2  | 0.1   |
| FBCT bunch-by-bunch fractions                 | 0.1     | 0.1  | 0.1  | 0.1   |
| Ghost-charge correction*                      | 0.0     | 0.0  | 0.0  | 0.0   |
| Satellite correction <sup>†</sup>             | 0.0     | 0.0  | 0.0  | 0.0   |
| Scan curve fit model <sup>†</sup>             | 0.5     | 0.4  | 0.5  | 0.4   |
| Background subtraction                        | 0.2     | 0.2  | 0.2  | 0.1   |
| Orbit-drift correction                        | 0.1     | 0.2  | 0.1  | 0.1   |
| Beam position jitter <sup>†</sup>             | 0.3     | 0.3  | 0.2  | 0.2   |
| Beam-beam effects*                            | 0.3     | 0.3  | 0.2  | 0.3   |
| Emittance growth correction*                  | 0.2     | 0.2  | 0.2  | 0.2   |
| Non-factorization effects*                    | 0.4     | 0.2  | 0.5  | 0.4   |
| Length-scale calibration                      | 0.3     | 0.3  | 0.4  | 0.2   |
| ID length scale*                              | 0.1     | 0.1  | 0.1  | 0.1   |
| Bunch-by-bunch $\sigma_{\rm vis}$ consistency | 0.2     | 0.2  | 0.4  | 0.2   |
| Scan-to-scan reproducibility                  | 0.5     | 1.2  | 0.6  | 0.5   |
| Reference specific luminosity                 | 0.2     | 0.2  | 0.4  | 0.2   |
| Subtotal for absolute vdM calibration         | 1.1     | 1.5  | 1.2  | -     |
| Calibration transfer <sup>†</sup>             | 1.6     | 1.3  | 1.3  | 1.3   |
| Afterglow and beam-halo subtraction*          | 0.1     | 0.1  | 0.1  | 0.1   |
| Long-term stability                           | 0.7     | 1.3  | 0.8  | 0.6   |
| Tracking efficiency time-dependence           | 0.6     | 0.0  | 0.0  | 0.2   |
| Total uncertainty (%)                         | 2.1     | 2.4  | 2.0  | 1.7   |

Correlations in uncertainty between years results in a reduced combined uncertainty

2019\_07\_29

#### Conclusions & Outlook

- Luminosity uncertainty measurement a dominate uncertainty in numerous analyses
- ATLAS uses multiple luminometers to monitor the luminosity of proton-proton collisions, with LUCID-2 providing the primary luminosity measurement
- Calibration and calibration transfer of LUCID-2 critical to accurate measurement of luminosity and reducing systematics

Above results are preliminary with room for improvement

2019 07 29 11

# Backup & References

- Longitudinal density monitor: <a href="https://cds.cern.ch/record/1427726/files/ATS-Note-2012-028-PERF.pdf">https://cds.cern.ch/record/1427726/files/ATS-Note-2012-028-PERF.pdf</a>
- $\sqrt{s} = 8$  TeV luminosity and detailed discussion on luminosity calculations and uncertainties: https://arxiv.org/abs/1608.03953
- LUCID-2: <a href="https://cds.cern.ch/record/2633501/files/document.pdf">https://cds.cern.ch/record/2633501/files/document.pdf</a>
- Run-II Luminosity: <a href="https://cds.cern.ch/record/2677054/files/ATLAS-CONF-2019-021.pdf">https://cds.cern.ch/record/2677054/files/ATLAS-CONF-2019-021.pdf</a>
- Run-II public lumi plots: <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2">https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2</a>

# Determining $n_1 n_2$

- Total beam intensity measured with high precision ( $\sigma_{\rm syst} < 0.3\%$ ) by DC current transformers
- Fraction of intensity in each bunch measured by fast beam current transformers (FBCT) ( $\sigma_{\rm syst} < 0.05\%$ )
- Contribution to total beam intensity from protons leaked into non-colliding bunches (ghost charges) from by LHCb beam gas measurements ( $\sigma_{\rm syst} < 0.05\%$ )
- Contribution to the intensities from satellite bunches (protons in "wrong" RF bucket,  $\Delta t \sim x * 2.5 \, \mathrm{ns}$ ) measured by the longitudinal density monitor ( $\sigma_{\mathrm{syst}} < 0.08\%$ )





#### Non-factorization Effects

- Assumption: The dependence of the luminosity on the beam separation can be factorized into uncorrelated x and y components:  $\Sigma_x \Sigma_y$
- Validity tested (and corresponding uncertainty measured) in off-axis scans, i.e.  $x \neq 0$  for a y-scan and vice-versa









#### LHC Parameters

| Parameter                                                                           | 2015      | 2016      | 2017         | 2018       |
|-------------------------------------------------------------------------------------|-----------|-----------|--------------|------------|
| Maximum number of colliding bunch pairs $(n_b)$                                     | 2232      | 2208      | 2544/1909    | 2544       |
| Bunch spacing (ns)                                                                  | 25        | 25        | 25/8b4e      | 25         |
| Typical bunch population (10 <sup>11</sup> protons)                                 | 1.1       | 1.1       | 1.1/1.2      | 1.1        |
| $\beta^*$ (m)                                                                       | 0.8       | 0.4       | 0.3          | 0.3 – 0.25 |
| Peak luminosity $\mathcal{L}_{\text{peak}} (10^{33}  \text{cm}^{-2} \text{s}^{-1})$ | 5         | 13        | 16           | 19         |
| Peak number of inelastic interactions/crossing $(\langle \mu \rangle)$              | $\sim 16$ | $\sim 41$ | $\sim 45/60$ | $\sim 55$  |
| Luminosity-weighted mean inelastic interactions/crossing                            | 13        | 25        | 38           | 36         |
| Total delivered integrated luminosity (fb <sup>-1</sup> )                           | 4.0       | 38.5      | 50.2         | 63.4       |

2019\_07\_29