Developments on Skipper-CCD detectors for dark matter searches

Miguel Sofo Haro for the SENSEI Collaboration

July 18, 2019

† Sub-Electron-Noise SkipperCCD Experimental Instrument

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

Fully-Depleted Charge Coupled Devices (CCDs)

- $C_{SN}<0.05 pf\to S_{V/e^-}>3\mu V/e^-\to$ low readout noise $\to\sim$ 50 eV energy threshold.
- 675 μ m, 6×6 cm² detector have a mass of 5.2 g

Has motivated their application in **low energy threshold particle experiments**. Two examples are CONNIE (Coherent Neutrino Nucleous Interaction Experiment) and DAMIC (Dark Matter in CCDs).

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

🚰 Fermilab

CCDs readout noise

- CDS is excellent for removing high frequency noise but sensitive to low frequencies
- 1/f impose a minimum noise.

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

SENSEI LDRD Collaboration (2015)

- Fermilab: Tiffenberg, Guardincerri, Sofo Haro
- Stony Brook: Rouven Essig
- LBNL: Steve Holland, Christopher Bebek

- Tel Aviv University: Tomer Volansky
- University of Oregon: Tien-Tien Yu
- Stanford University*: Jeremy Mardon

Objetive:

Develop a CCD-based detector with an energy threshold close to the silicon band gap (1.1 eV) using SkipperCCDs.

Skipper-CCD:

Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

🛟 Fermilab

Sensors

- Skipper-CCD prototype designed at LBNL MSL
- $\bullet~200$ & 250 $\mu \rm m$ thick, 15 $\mu \rm m$ pixel size
- \bullet Parasitic run, optic coating and Si resistivity ${\sim}10 \text{k}\Omega$
- 4 amplifiers per CCD, three different RO stage designs

Instrument

- System integration done at Fermilab
- Modified DES electronics for read out
- Firmware and image processing software
- Optimization of operation parameters

Output stage with non-destructive charge readout.

The final pixel value is the average of the samples $\frac{1}{N} \Sigma_i^N$ (pixel sample);

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

Output stage with non-destructive charge readout.

The final pixel value is the average of the samples $\frac{1}{N} \sum_{i}^{N} (pixel sample)_{i}$

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

Output stage with non-destructive charge readout.

The final pixel value is the average of the samples $\frac{1}{N} \sum_{i}^{N} (pixel sample)_{i}$

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

Output stage with non-destructive charge readout.

The final pixel value is the average of the samples $\frac{1}{N} \Sigma_i^N$ (pixel sample);

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

Output stage with non-destructive charge readout.

The final pixel value is the average of the samples $\frac{1}{N} \Sigma_i^N$ (pixel sample)

🛟 Fermilab

Counting electrons: 0, 1, 2..

🛟 Fermilab

⁵⁵Fe X-ray source: keep counting: ..1550, 1551, 1552..

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

Fermilab

SENSEI Collaboration

Build a detector using Skipper-CCDs to search for light DM canditates

- Fermilab: Michael Crisler, Alex Drlica-Wagner, Juan Estrada, Guillermo Fernandez, Miguel Sofo Haro, Javier Tiffenberg
- Oregon University: Tien-Tien Yu
- Stony Brook: Rouven Essig
- Tel Aviv University: Liron Barack, Erez Ezion, Tomer Volansky
- + several additional students + more to come

Fully funded by Heising-Simons Foundation & Fermilab HEISING-SIMONS FOUNDATION

Fermilab

SENSEI: lower the energy threshold to look for light DM candidates

Detect DM-e interactions by measuring the ionization produced by the electron recoils. See arXiv:1509.01598

Idea: use electrons in the bulk silicon from a CCD as target

protoSENSEI: technology demonstrator

We used the parasitically-fabricated R&D sensors to learn how to optimize operations and produce early-science results

🛟 Fermilab

ProtoSENSEI @MINOS

Technology demonstration: installation at shallow underground site

protoSENSEI @MINOS: results

World best limit below 5 MeV!!

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

🛟 Fermilab

Build an experiment with more mass Reduce dark current

- 10 gram Skipper-CCD system in 2019 \rightarrow MINOS.
- 100-gram Skipper-CCD system in 2020 \rightarrow SNOLAB, 2000 mts.
- New detectors
- New RO electronics.

🛟 Fermilab

LTA: Low Treshold Adquisition

- \bullet Single board \rightarrow four quadrants Skipper-CCD
- Clock voltages range and shape suitable for Skipper-CCDs
- Fully digital: ADC \rightarrow FPGA \rightarrow DCDS.
- Smart readout and DSP techniques for noise reduction.
- Easy scalable to houndred of detectors.

New Skipper-CCDs

- New silicon with higher resistivity and IR cover to reduce DC.
- Thicker detectors of 675 μm , 6144imes886 pixels of 15imes15 μm^2
 - 10 grams \rightarrow 5 skp-CCDs
 - 100 grams \rightarrow 50 skp-CCDs
- Detector packaging
 - Iow radiation background
 - good thermal conductivity
- Output stage with high single-electron sensitivity.

New Skipper-CCDs, surface test

 $0.14\,\mathrm{e_{rms}^-/pix}$ (300 samples and IW=30 $\mu\mathrm{s})$

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

19

‡ Fermilab

Current Step: single-device at MINOS

Currently taking data:

- optimization
- DC measurement

‡ Fermilab

SENSEI path

Summary

- SENSEI is the first dedicated experiment searching for electron-DM interactions
- protoSENSEI:
 - \blacktriangleright surface \rightarrow probed 0.5-4 MeV masses for the first time, and larger xsec than existing direct-detection constraints.
 - \blacktriangleright MINOS \rightarrow produced best limit for light DM with masses bellow 5 MeV
- SENSEI experiment will use better sensors & collect almost 2 million times the exposure of this surface run in next \sim 2-3 years, probing large regions of uncharted territory populated by popular models
- Fully funded: 10g & 100g design done, construction started.
 - Grant from Heising-Simons Foundation
 - Full technical support from Fermilab

THANK YOU!

BACK UP SLIDES

Dark current measurements and expectation

🛠 Fermilab

SENSEI threshold vs dark current

- Counting electrons \Rightarrow **noise has zero impact**
- It can take about 1h to read the sensors
- Dark Current is the limiting factor

It's better to readout continuously to minimize the impact of the DC

Dark Current	$\geq 1\mathrm{e}^-$	\geq 2e $^-$	\geq 3e ⁻
$[e^-pix^{-1}day^{-1}]$	[pix]	[pix]	[pix]
10 ⁻³	$1 imes 10^8$	$3 imes 10^3$	$7 imes10^{-2}$
10^{-5}	$1 imes 10^{6}$	$3 imes 10^{-1}$	$7 imes 10^{-8}$
10 ⁻⁷	$1 imes 10^4$	$3 imes 10^{-5}$	$7 imes10^{-14}$

Operation mode (continuous-RO or long-exposures) will depend on the measured DC and spurious charge of the Science sensors

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

Image taken with SENSEI: 20 samples per pixel

Single pixel distribution: X-rays from ⁵⁵Fe

The gain is the same for all the samples

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

Charge in pixel distribution. Counting electrons: 0, 1, 2..

4000 samples

Charge in pixel distribution. Counting electrons: 0, 1, 2..

4000 samples

Snolab vacuum vessel design

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

Snolab shield design

protoSENSEI: commissioning run at surface: arXiv:1804.00088

Observed spectrum using 800 samples per pixel

dark current: $\sim 1.1 \ e^-$ /pix/day; no events with 5-100 electrons

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

protoSENSEI: commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between \sim 500 keV to 4 MeV!

Terrestrial effects: Emken, Essig, Kouvaris, Sholapurkar (to appear)

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

SENSEI commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between \sim 500 keV to 4 MeV!

Terrestrial effects: Timon Emken, RE, Kouvaris, Mukul Sholapurkar (to appear)

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

SENSEI commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between ${\sim}500$ keV to 4 MeV!

Terrestrial effects: Timon Emken, RE, Kouvaris, Mukul Sholapurkar (to appear)

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019

Image taken with SENSEI: 20 samples per pixel

Single pixel distribution: X-rays from ⁵⁵Fe

The gain is the same for all the samples

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019