Developments on Skipper-CCD detectors for dark matter searches

Miguel Sofo Haro
for the SENSEI Collaboration

July 18, 2019

† Sub-Electron-Noise SkipperCCD Experimental Instrument
Fully-Depleted Charge Coupled Devices (CCDs)

- $C_{SN} < 0.05 \text{ pf} \rightarrow S_{V/e^-} > 3 \mu\text{V}/e^- \rightarrow$ low readout noise $\rightarrow \sim 50 \text{ eV}$ energy threshold.
- $675 \mu\text{m}, 6 \times 6 \text{ cm}^2$ detector have a mass of 5.2 g

Has motivated their application in **low energy threshold particle experiments**. Two examples are CONNIE (Coherent Neutrino Nucleous Interaction Experiment) and DAMIC (Dark Matter in CCDs).
CCDs readout noise

- CDS is excellent for removing high frequency noise but sensitive to low frequencies.
- 1/f impose a minimum noise.

\[\sigma^2 = \sigma_W^2 + \sigma_{1/f}^2 + \sigma_{1/f}^2 \]

Integration time [\(\mu s \)]

\[\sigma^2 [\mu V^2] \]
SENSEI: Sub-Electron-Noise SkipperCCD Experimental Instrument

SENSEI LDRD Collaboration (2015)

- **Fermilab**: Tiffenberg, Guardincerri, Sofo Haro
- **Stony Brook**: Rouven Essig
- **LBNL**: Steve Holland, Christopher Bebek
- **Tel Aviv University**: Tomer Volansky
- **University of Oregon**: Tien-Tien Yu
- **Stanford University**: Jeremy Mardon

Objective:

Develop a CCD-based detector with an energy threshold close to the silicon band gap (1.1 eV) using SkipperCCDs.

Skipper-CCD:

Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)
SENSEI: First working instrument using SkipperCCD tech

Sensors
- Skipper-CCD prototype designed at LBNL MSL
- 200 & 250 μm thick, 15 μm pixel size
- Parasitic run, optic coating and Si resistivity \(\sim 10kΩ \)
- 4 amplifiers per CCD, three different RO stage designs

Instrument
- System integration done at Fermilab
- Modified DES electronics for read out
- Firmware and image processing software
- Optimization of operation parameters
Skipper-CCD

Output stage with non-destructive charge readout.

The final pixel value is the average of the samples $\frac{1}{N} \sum_{i}^{N} (\text{pixel sample})_i$.
Output stage with non-destructive charge readout.

The final pixel value is the average of the samples $\frac{1}{N} \sum_{i}^{N} (\text{pixel sample})$.
Output stage with non-destructive charge readout.

The final pixel value is the average of the samples \(\frac{1}{N} \sum_{i}^{N} (\text{pixel sample}_i) \).
Skipper-CCD

Output stage with non-destructive charge readout.

The final pixel value is the average of the samples \(\frac{1}{N} \sum_{i}^{N} (\text{pixel sample})_i \).
Output stage with non-destructive charge readout.

The final pixel value is the average of the samples \(\frac{1}{N} \sum_{i}^{N} \text{(pixel sample)}_{i} \).
Counting electrons: 0, 1, 2..

Standard CCD mode: charge in each pixel is measured once

New Skipper CCD: charge in each pixel is measured multiple times

Readout-noise: 3.5 e RMS

Readout-noise: 0.06 e RMS
55 Fe X-ray source: keep counting: ..1550, 1551, 1552..
Noise vs. #samples - $1/\sqrt{N}$
SENSEI Collaboration

Build a detector using Skipper-CCDs to search for light DM candidates

- **Fermilab**: Michael Crisler, Alex Drlica-Wagner, Juan Estrada, Guillermo Fernandez, Miguel Sofo Haro, Javier Tiffenberg
- **Oregon University**: Tien-Tien Yu
- **Stony Brook**: Rouven Essig
- **Tel Aviv University**: Liron Barack, Erez Ezion, Tomer Volansky
- + several additional students + more to come

Fully funded by Heising-Simons Foundation & Fermilab
SENSEI: lower the energy threshold to look for light DM candidates

Detect DM-e interactions by measuring the ionization produced by the electron recoils. See arXiv:1509.01598

Idea: use electrons in the bulk silicon from a CCD as target

This requires very low noise!
We used the parasitically-fabricated R&D sensors to learn how to optimize operations and produce early-science results.
ProtoSENSEI @MINOS

Technology demonstration: installation at shallow underground site
protoSENSEI @MINOS: results

Light Dark Photon

Heavy Dark Photon

World best limit below 5 MeV!!
What are the next steps for SENSEI?

Build an experiment with more mass
Reduce dark current

- 10 gram Skipper-CCD system in 2019 → MINOS.
- 100-gram Skipper-CCD system in 2020 → SNOLAB, 2000 mts.

- New detectors
- New RO electronics.
LTA: Low Threshold Acquisition

- Single board → four quadrants Skipper-CCD
- Clock voltages range and shape suitable for Skipper-CCDs
- Fully digital: ADC → FPGA → DCDS.
- Smart readout and DSP techniques for noise reduction.
- Easy scalable to hundreds of detectors.

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019
New Skipper-CCDs

- New silicon with higher resistivity and IR cover to reduce DC.
- Thicker detectors of $675 \, \mu m$, 6144×886 pixels of $15 \times 15 \, \mu m^2$
 - 10 grams \rightarrow 5 skp-CCDs
 - 100 grams \rightarrow 50 skp-CCDs
- Detector packaging
 - low radiation background
 - good thermal conductivity
- Output stage with high single-electron sensitivity.
New Skipper-CCDs, surface test

\[0.14 \text{ e}^{-}_{\text{rms}}/\text{pix} \ (300 \text{ samples and IW}=30 \mu s) \]
Current Step: single-device at MINOS

Currently taking data:
- optimization
- DC measurement
SENSEI path

Summary

- SENSEI is the first dedicated experiment searching for electron-DM interactions

- protoSENSEI:
 - surface → probed 0.5-4 MeV masses for the first time, and larger xsec than existing direct-detection constraints.
 - MINOS → produced best limit for light DM with masses bellow 5 MeV

- SENSEI experiment will use better sensors & collect almost 2 million times the exposure of this surface run in next ~2-3 years, probing large regions of uncharted territory populated by popular models

- Fully funded: 10g & 100g design done, construction started.
 - Grant from Heising-Simons Foundation
 - Full technical support from Fermilab
THANK YOU!
BACK UP SLIDES
Dark current measurements and expectation

DC (e-/pix/day)

- General purpose CCD setups. No IR cover. At sea level. Output transistor ON.
- SENSEI prototype surface run (low resistivity Si) and CONNIE experiment (high resistivity Si). ~IR cover. At sea level. Output transistor ON.
- SENSEI prototype run (low resistivity Si). ~IR cover. At MINOS (100m underground).
- DAMIC experiment run (high resistivity Si). ~IR cover. At SNOLAB (2km underground). Output transistor ON.
- SENSEI expectation with high resistivity Si. IR cover. At SNOLAB (2km underground). Output transistor OFF.
SENSEI threshold vs dark current

- Counting electrons \Rightarrow noise has zero impact
- It can take about 1h to read the sensors
- Dark Current is the limiting factor

It’s better to readout continuously to minimize the impact of the DC

Dark Current

<table>
<thead>
<tr>
<th>$[e^{-}\text{pix}^{-1}\text{day}^{-1}]$</th>
<th>$\geq 1e^{-}$ [pix]</th>
<th>$\geq 2e^{-}$ [pix]</th>
<th>$\geq 3e^{-}$ [pix]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3}</td>
<td>1×10^{8}</td>
<td>3×10^{3}</td>
<td>7×10^{-2}</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>1×10^{6}</td>
<td>3×10^{-1}</td>
<td>7×10^{-8}</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>1×10^{4}</td>
<td>3×10^{-5}</td>
<td>7×10^{-14}</td>
</tr>
</tbody>
</table>

Operation mode (continuous-RO or long-exposures) will depend on the measured DC and spurious charge of the Science sensors
SENSEI: reach of a 100g, zeroish-background experiment

Light Dark Photon

Heavy Dark Photon

Meeting of the Division of Particles & Fields of the APS, Boston, July 18, 2019
The gain is the same for all the samples
Charge in pixel distribution. Counting electrons: 0, 1, 2..
Charge in pixel distribution. Counting electrons: 0, 1, 2..

4000 samples

Entries 1635
χ² / ndf 19.6 / 25
Mean -0.002 ± 0.0016
Sigma 0.06 ± 0.001
Snolab vacuum vessel design

- Cold copper box for CCD modules
- Flex cables slot
- Heat shield
- Inner shield
- Copper bell
- Service access ports
Snolab shield design

50cm HDPE/Water neutron shield
15cm copper
5cm lead

50cm HDPE/Water neutron shield
15cm copper
5cm lead
Observed spectrum using 800 samples per pixel

Exposure: 0.019 gram-days

dark current: ~ 1.1 e$^{-}$/pix/day; no events with 5-100 electrons
First direct-detection constraints between ~ 500 keV to 4 MeV!

\[F_{\text{DM}} = \left(\frac{\alpha m_e}{q} \right)^2 \]

Terrestrial effects: Emken, Essig, Kouvaris, Sholapurkar (to appear)
First direct-detection constraints between ~ 500 keV to 4 MeV!

Terrestrial effects: Timon Emken, RE, Kouvaris, Mukul Sholapurkar (to appear)
SENSEI commissioning run at surface: arXiv:1804.00088

First direct-detection constraints between ~ 500 keV to 4 MeV!

![Graph showing constraints between dark matter mass and cross-section]

Terrestrial effects: Timon Emken, RE, Kouvaris, Mukul Sholapurkar (to appear)
Single pixel distribution: X-rays from ^{55}Fe

The gain is the same for all the samples.