An Overview of Heavy-Ion Physics in Small Collision Systems at the LHC

A. G. Knospe
The University of Houston
on behalf of ALICE, ATLAS, CMS, & LHCb
31 July 2019
Introduction

• Why study small systems?
 – Baseline for A–A (vacuum processes, “cold nuclear matter”)
 – Study “turn-on” of collective effects
 – Could there be a QGP?

• Modelling

pp Models
Single hard scatterings
vacuum processes
+ multiparticle interactions
color reconnection, color ropes, …

A–A Models
QGP, hydrodynamics (radial & elliptic flow), statistical models

• Disclaimer: there are of course many more results than what I show here.
Strangeness Production

- Smooth evolution of particle production with charged-particle multiplicity across pp, p–Pb, Xe–Xe, and Pb–Pb collisions
 - No energy dependence
 - Hadron chemistry is driven by the multiplicity (system size)

- Increase of strange-particle production for small systems, saturation around thermal-model values for large systems
 - Magnitude of strangeness enhancement increases with strange-quark content

\[|S| = 0 \]
\[|S| = 1 \]
\[|S| = 2 \]
\[|S| = 3 \]
• Near-side, long-range correlations observed in Pb–Pb, p–Pb, and pp collisions
• Extends over at least 4 units of η
• Collective behavior in small systems?
• Near-side, long-range yields:
 – Negligible for $N_{\text{trk}} < 40$, then \simlinear increase
 – Collision system: for given multiplicity $Y_{pp} < Y_{pPb} < Y_{PbPb}$

• Yields described by Glasma model for $N_{\text{trk}} < 100$
 – Gluon saturation, initial collimated gluon emission
 – No collision energy dependence
 – Model overestimates associated yields at high multiplicity
• ATLAS studied ridge in Z-tagged pp collisions
 – Presence of $Z \rightarrow$ hard scattering in event ($\text{high } Q^2$)
 – Proposal: presence of $Z \rightarrow$ smaller impact parameter (b) \rightarrow smaller initial eccentricity \rightarrow smaller v_2 (cf. inclusive pp sample)
 – Template fits remove back-to-back dijets, corrections for pileup
 – **No significant difference** between results in Z-tagged and inclusive events: presence of hard scattering does not affect ridge formation
• Ridge also observed at forward & backward rapidity (p- and Pb-going directions)
• Size of near-side ridge increases with multiplicity
• Structures at forward and backward rapidities have similar magnitudes for similar multiplicities

PLB 762 473 (2016)
ν_n Measurements

- **A–A Collisions**
 - Strong N_{ch} dependence
 - Ordering: $v_2 > v_3 > v_4$ (except for highest N_{ch})
 - Expected due to collision geometry (v_2), fluctuations (v_3, v_4)
 - Hydrodynamic calculations describe data well except for v_2 at low N_{ch}

- **Small Systems**
 - Weak N_{ch} dependence (similar values to A–A)
 - Ordering: $v_2 > v_3 > v_4$
 - Multi-particle results ($v_2\{4\}$ & $v_2\{6\}$) less influenced by non-flow
 - Results cannot be explained by non-flow effects alone (PYTHIA)

Graphical Abstract

- **Graph (a)**:
 - PYTHIA 8
 - Hydro
 - ALICE
 - Data points and curves for v_2, v_3, and v_4 across different N_{ch} and s_{NN} values.

- **Graph (b)**:
 - ALICE
 - Data points and curves for v_2 at different p_T bins and η values.

Figure Legend

- ALICE
- $v_2(2,|\eta| > 1.4)$
- $v_2(2,|\eta| > 1.0)$
- $v_2(3,|\eta| > 1.0)$
- $v_4(2,|\eta| > 1.0)$

Additional Information

- arXiv:1903.01790
v_2 of Identified Hadrons

- A–A collisions
 - Mass ordering of v_2 for low p_T
 - Baryon-meson grouping for high p_T
- Indications of similar behavior in p–Pb
Evolution of ρ_T Spectra

- Hadron ρ_T spectra become harder with increasing multiplicity ($\langle \rho_T \rangle$ increases)
- Qualitative similarities for pp, p–Pb, and Pb–Pb
- pp & p–Pb: modification mostly for $\rho_T < 3$ GeV/c
• A–A collisions: mass ordering of $\langle p_T \rangle$ (see p and ϕ)
 – Consistent with hydrodynamic flow

• Small Systems:
 – Mesons (K^*, ϕ) have greater $\langle p_T \rangle$ than baryons w/ similar masses
 – More rapid increase in $\langle p_T \rangle$ with multiplicity
 – $\langle p_T \rangle$ values in high-mult. pp & p–Pb reach those seen in Pb–Pb

See also:
CMS *PLB* 768 103 (2017)
Blast-Wave Fits

- Simultaneous blast-wave fits of p_T spectra
 - ALICE: π, K^{\pm}, & p
 - CMS: K^0_S & Λ

- A–A collisions
 - T_{kin} decreases, flow velocity $\langle \beta_T \rangle$ increases w/ centrality

- Small systems
 - Large increase of $\langle \beta_T \rangle$ w/ mult.
 - Higher T_{kin} values than A–A
 - Similar multiplicities: $\langle \beta_T \rangle$ (and $\langle p_T \rangle$) greater in smaller systems

- Change of $\langle p_T \rangle$ vs. multiplicity qualitatively consistent with expanding fluid, but MPIs and/or color reconnection are possible explanations in small systems

Caveats: fit results sensitive to particles included & fit ranges
J/ψ in p–Pb

- Prompt J/ψ from initial hard scatterings
 - Modification due to initial-state effects (gluon density in nucleus, initial-state energy loss) or final-state effects (co-movers)
- Low p_T: suppression of prompt J/ψ
- High p_T: R_{pPb} consistent with unity
 - Possible weak decrease from backward to forward y
 - Suppression in Pb–Pb not due to cold nuclear matter effects
- R_{pPb} in good agreement with model predictions

Also: ATLAS *EPJC* 78, 171 (2018); ALICE *EPJC* 78, 466 (2018)
• More suppression of $\psi(2S)$ compared to ground state
 – Different nuclear effects on J/ψ vs. $\psi(2S)$
 – Decent agreement with GCG + color evaporation model (in p-going direction), co-movers
 – Co-movers expected to affect $\psi(2S)$ more than J/ψ, this difference greater in Pb-going direction

• Observed suppression pattern consistent w/ final-state effect
Y(nS) Suppression

- Y(1S) suppressed at low p_T
- Y(2S) suppressed w.r.t Y(1S)
- Suppression in forward (p-going) direction w.r.t. backward
 - Consistent w/ two predictions with nPDFs
Y(nS) Suppression

- Y(2S) & Y(3S) suppressed w.r.t Y(1S)
- More suppression with increasing multiplicity
- Final-state suppression mechanisms that affect excited Y states more than ground state?
- Y suppression pattern quite similar to situation for J/ψ and ψ(2S)
• SMOG system
 – Low-density noble gas injected into VELO vessel (~100x higher pressure than LHC vacuum)
 – Allows LHCb to operate in fixed-target mode

• Measurements of \bar{p} yields in p–He collisions
 – Uncertainties smaller than spread among various theoretical models
 – Will help shed light on \bar{p} excess observed by AMS-02 and PAMELA: do those \bar{p} come from cosmic-ray interactions with interstellar medium, or from Dark Matter annihilation?

• ALICE studies of \bar{d} and ^{3}He also useful for Dark Matter searches
Direct Photons

- R_{pPb} of isolated direct γ:
 - Consistent with unity at positive η
 - Modest modification in Pb-going direction (more d quarks)
 - Data consistent with modification of PDFs, disfavor initial-state energy loss

![Graph showing R_{pPb} as a function of E_T^γ](image-url)
Dijet Correlations

- Shapes of dijet angular correlation distributions and conditional yields are sensitive to gluon saturation at low x_A
- Azimuthal correlation functions:
 - Wider for dijets with large rapidity separation
 - No significant broadening from $pp \rightarrow p + Pb$
- Conditional yields suppressed by ~20% for forward-forward dijets
 - Can constrain nuclear effects in low-x region (e.g. saturation)

$19p + Pb$

Knospe

arXiv:1901.10440
Conclusions

• Strangeness production evolves smoothly with multiplicity
 – No energy or collision-system dependence
 – Magnitude of enhancement increases with strangeness content
 – Small systems: rope hadronization, core-corona effects?

• Near-side ridge in small systems

• v_2 in small systems not explained by non-flow effects alone

• p_T spectral shapes:
 – Increasing $\langle p_T \rangle$ and $\langle \beta_T \rangle$ with multiplicity (MPIs, color reconnection, flow?)
 – Mass ordering of $\langle p_T \rangle$ in central A–A → violated in small systems (different trends for baryons vs. mesons?)

• Quarkonia
 – Suppression at low p_T
 – Excited states more suppressed than ground states (final-state effects)
 – Multiplicity dependence of $Y(nS)$ suppression

• Measurements of \bar{p} production in p–He collisions will illuminate the excess observed by PAMELA and AMS-02
Additional Material
The ϕ meson ($s\bar{s}$) is a key probe in studying strangeness production
- Does ϕ evolve as $S=0$ particle, or as if it had open strangeness?

Large systems: ϕ production described by thermal models

Small systems: increase in ϕ/π ratio with multiplicity
- Inconsistent with simple canonical suppression
- Qualitatively explained by rope hadronization (DIPSY) and core/corona (EPOS)
 - Connected to strong color fields/high density

Ratios ϕ/K and Ξ/ϕ fairly flat across wide multiplicity range
- The ϕ has “effective strangeness” of 1–2 units
• Small systems: particles with open strangeness subject to canonical suppression, while ϕ is not
• ALICE observes increase in ϕ/π with multiplicity in pp
 – Not expected for simple canonical suppression
 – Does system drop out of equilibrium?
• Groups of overlapping strings fragment with higher effective string tension
 – Enhances strange-particle production
 – Enhancement of ϕ similar to open-strangeness hadrons
 – DIPSY (color ropes) qualitatively describes increase of ϕ/π with multiplicity
Core/Corona Effects

- EPOS: describes pp, p–A, and A–A collisions with common framework
 - Collision divided into a core (QGP) and a corona of jets
 - Core evolves hydrodynamically
 - Hadronic phase with re-scattering and regeneration (UrQMD)

![Diagram showing low-multiplicity pp, peripheral A–A, high-multiplicity pp, and central A–A collisions with corresponding plots for EPOS 3.210 and ALICE (black).]
• A–A collisions: mass ordering of $\langle p_T \rangle$ (see p and ϕ)
 – Consistent with hydrodynamic flow
• Small Systems:
 – Mesons (K^*, ϕ) have greater $\langle p_T \rangle$ than baryons w/ similar masses
 – More rapid increase in $\langle p_T \rangle$ with multiplicity
 – $\langle p_T \rangle$ values in high-mult. pp & p–Pb reach those seen in Pb–Pb

CMS | 6.2 pb$^{-1}$ ($\sqrt{s} = 7$ TeV) | 35 nb$^{-1}$ ($s_{NN} = 5.02$ TeV) | 2.3 μb$^{-1}$ ($s_{NN} = 2.76$ TeV)

| pp | $|y_{cm}| < 1$ | pPb | PbPb | $|y_{cm}| < 1$ |

$\langle K^* \rangle$ vs. N_{trk}
Baryon-to-Meson Ratios

- Baryon-to-meson ratios vs. p_T allow us to study the interplay of hydrodynamics and recombination.
- Compare Xe–Xe & Pb–Pb: consistent results for similar multiplicities.
- p/ϕ ratio is useful: baryon and meson with almost the same mass.
 - Flat with $p_T \rightarrow$ consistent with hydrodynamic behavior, but can also be described by some recombination models.

[V. Greco et al, *PRC* 92 054904 (2015)]
Baryon/Meson Ratios

• From low multiplicity (peripheral) to high multiplicity (central):
 – Baryon/Meson ratios depleted at low p_T
 – Enhanced at intermediate p_T

• Qualitative similarities between pp, $p-$Pb, & Pb–Pb
Baryon/Meson Ratios

- Baron/meson ratios in different p_T regions:
 - Low-p_T depletion and intermediate-p_T enhancement
- Similar behavior for the three systems

Graphs

- p/π ratios in different p_T regions:
 - Low-p_T depletion and intermediate-p_T enhancement
 - Similar behavior for the three systems

Equations

$$\frac{p}{p}(p + K^0 S)/(\pi^0 + \pi^-)$$

Experiment Data

- ALICE: 7 TeV, $|y| < 0.5$
- CMS: 5.02 TeV, $0 < y < 0.5$
- NN: 2.76 TeV, $|y| < 0.5$
 - $c < 3.00 \text{ GeV}/c$
 - $p < 0.80 < 1.00 \text{ GeV}/c$

Gluon-Gluon

- p/π: $6.50 < p_T < 8.00 \text{ GeV}/c$
- p: $6.00 < p_T < 8.00 \text{ GeV}/c$
- Pb: $6.50 < p_T < 8.00 \text{ GeV}/c$

K/\pi

- p: $0.50 < p_T < 0.55 \text{ GeV}/c$
- p: $2.40 < p_T < 2.60 \text{ GeV}/c$
- p: $10.00 < p_T < 15.00 \text{ GeV}/c$

ALICE

- ALICE: 7 TeV, $|y| < 0.5$
- CMS: 5.02 TeV, $0 < y < 0.5$
- NN: 2.76 TeV, $|y| < 0.5$
- $c < 3.00 \text{ GeV}/c$
- $p < 0.80 < 1.00 \text{ GeV}/c$

PRC 99 024906 (2019)
Baryon/Meson Ratios

- Baron/meson ratios in different p_T regions:
 - Low-p_T depletion and intermediate-p_T enhancement
- Similar behavior for the three systems
- Trend in pp described qualitatively by color reconnection (PYTHIA) and color ropes (DIPSY); over-predicted by collective radial expansion in EPOS
Baryon/Meson Ratios

\[
\frac{N_{\Lambda}}{N_{K^0}} = \frac{1}{1 + \frac{p}{p^+} (p + 5 + 10 + 15 + 20)}
\]

where \(N_{\Lambda} \) is the number of \(\Lambda \) baryons and \(N_{K^0} \) is the number of \(K^0 \) mesons. This ratio is shown for different energy scales and collision systems.

ALICE

- **pp** collision at 7 TeV, \(|y| < 0.5\): ALICE \(N_{\text{pp}} \) = 21.3 \(\pi_0 \) per event.
- **p-Pb** collision at 5.02 TeV, \(0 < y < 0.5 \): ALICE \(N_{\text{p-Pb}} \) = 5.02 \(\pi_0 \) per event.
- **Pb-Pb** collision at 2.76 TeV, \(|y| < 0.5\): ALICE \(N_{\text{Pb-Pb}} \) = 21.3 \(\pi_0 \) per event.

ALICE Multiplicity Classes

- **V0M Class I**
- **V0M Class X**

CMS

- **pp** collision at 5.02 TeV, \(0 < y < 0.5 \): CMS \(N_{\text{pp}} \) = 21.3 \(\pi_0 \) per event.
Baryon/Meson Ratios

\[
\frac{N(\mu+\bar{\mu})}{N(\pi+\bar{\pi})} = 7 \text{ TeV, } |y| < 0.5
\]

\[
\frac{N(K^+ + K^-)}{N(\pi^+ + \pi^-)} = 5.02 \text{ TeV, } 0 < y_{\text{cut}} < 0.5
\]

\[
\frac{N(p + \bar{p})}{N(p + p)} = 2.76 \text{ TeV, } |y| < 0.5
\]

\[
\frac{N(c + \bar{c})}{N(\pi + \bar{\pi})} < 0.80 \text{ GeV/c}
\]

\[
\frac{N(c + \bar{c})}{N(\pi + \bar{\pi})} < 2.90 \text{ GeV/c}
\]

\[
\frac{N(c + \bar{c})}{N(\pi + \bar{\pi})} < 8.00 \text{ GeV/c}
\]
Baryon/Meson Ratios

\[\frac{p + \bar{p}}{\pi^+ + \pi^-} \]

\[\frac{K^+ + K^-}{\pi^+ + \pi^-} \]

\[\frac{\Lambda}{K^0} \]

\[\frac{\Lambda}{\bar{K}^0} \]

\[\frac{S}{K_L} \]

\[\frac{dN}{d\eta} |_{|\eta| < 0.5} \]

\[\text{ALICE pp } \sqrt{s} = 7 \text{ TeV, } |y| < 0.5 \]

\[\text{Pythia8 Monash NoCR} \]

\[\text{Pythia8 Monash WithCR} \]

\[\text{DIPSY Color Ropes} \]

\[\text{EPOS LHC} \]

\[\text{HERWIG7} \]

arXiv:1807.11321
Nuclei

- **Thermal models**
 - Hadrons emitted in statistical equilibrium with chemical freeze-out temperature T_{ch}
 - Yields proportional to $\exp(-m/T_{ch})$

- **Coalescence**
 - Nuclei formed by baryons close in phase space after kinetic freeze-out
 - Nuclei may break up and re-form during hadronic phase

- **Deuterons:**
 - Coalescence in small systems and thermal production in $A-A$
 - Smooth transition between systems
 - Production controlled by system size

- **3He:** factor of 5 difference in 3He/p ratio from p–Pb to Pb–Pb
 - But also a large gap in multiplicity
 - More data needed…

\[\frac{dN}{d\eta} \quad |\eta| < 0.5 \]

\[\frac{dN_{ch}}{d\eta} \quad |\eta| < 0.5 \]
Deuteron Coalescence

- Coalescence parameter for nucleus i with mass number A:

$$E_i \frac{d^3 N_i}{dp_i^3} = B_A \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^A$$

$$B_2 = \frac{E_d \frac{d^3 N_d}{dp_d^3}}{\left(E_p \frac{d^3 N_p}{dp_p^3} \right)^2}$$

- Simple coalescence
 - Flat $B_2(p_T)$
 - Simple relationship between d & p v_2:
 - $v_2^d(p_T) = 2v_2^p(2p_T)$

- Simple coalescence does not describe ALICE deuteron measurements in Pb–Pb
 - Describes lower energy A–A data
 - B_2 flatter for smaller collision systems
Deuteron Coalescence

- Coalescence parameter for nucleus i with mass number A:

$$E_i \frac{d^3 N_i}{dp_i^3} = B_A \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^A$$

$$B_2 = \frac{E_d \frac{d^3 N_d}{dp_d^3}}{\left(E_p \frac{d^3 N_p}{dp_p^3} \right)^2}$$

- Simple coalescence
 - Flat $B_2(p_T)$
 - Simple relationship between d & p v_2:
 - $v_2^d(p_T) = 2v_2^p(2p_T)$

- Simple coalescence does not describe ALICE deuteron measurements in Pb–Pb
 - Describes lower energy A–A data
 - B_2 flatter for smaller collision systems
 - B_2 evolves smoothly with system size
• LHCb: first measurement of charm production in fixed-target mode at LHC
 – D^0 and prompt J/ψ in p–He and p–Ar collisions
• Does the proton contain intrinsic charm?
• Production cross-sections compared to calculations without intrinsic (valence-like) charm contribution
 – No effect seen
 – Proves large Bjorken x:

Since $x \approx \frac{2mc}{\sqrt{s_{NN}}} e^{-y^*}$,

large $x \to$ negative y^*

Figure:
- LHCb data for D^0 and J/ψ production in p–He collisions at $\sqrt{s_{NN}} = 86.6$ GeV.
- Comparison with calculations using CT14NLO+nCTEQ15.

Source: *PRL 122, 132002 (2019)*
Mid-Rapidity J/ψ R_{pPb}

EPJC 78 171 (2018)

ATLAS
- $p+$Pb, $\sqrt{s_{NN}} = 5.02$ TeV, $L = 28$ nb$^{-1}$
- pp, $\sqrt{s} = 5.02$ TeV, $L = 25$ pb$^{-1}$

EPJC 78 466 (2018)

ALICE
- Prompt J/ψ
- $p-$Pb $\sqrt{s_{NN}} = 5.02$ TeV

LHCb
- Prompt J/ψ
- $p-$Pb $\sqrt{s_{NN}} = 5.02$ TeV

- $-1.37 < y_{\text{cms}} < 0.43$