An Overview of Heavy-Ion Physics in Small Collision Systems at the LHC

A. G. Knospe The University of Houston on behalf of ALICE, ATLAS, CMS, & LHCb 31 July 2019

Introduction

- Why study small systems?
 - Baseline for A–A (vacuum processes, "cold nuclear matter")
 - Study "turn-on" of collective effects
 - Could there be a QGP?
- Modelling

pp Models

Single hard scatterings vacuum processes + multiparticle interactions color reconnection, color ropes, ...

Knospe

• Disclaimer: there are of course many more results than what I show here.

Strangeness Production

- Smooth evolution of particle production with chargedparticle multiplicity across pp, p–Pb, Xe–Xe, and Pb–Pb collisions
 - No energy dependence
 - Hadron chemistry is driven by the multiplicity (system size)
- Increase of strange-particle production for small systems, saturation around thermalmodel values for large systems
 - Magnitude of strangeness enhancement increases with strange-quark content

Ridge

- Near-side, long-range correlations observed in Pb–Pb, p–Pb, and pp collisions
- Extends over at least 4 units of η
- Collective behavior in small systems?

Knospe

- Near-side, long-range yields:
 - Negligible for N_{trk} < 40, then ~linear increase
 - Collision system: for given multiplicity $Y_{pp} < Y_{pPb} < Y_{PbPb}$
- Yields described by Glasma model for N_{trk} < 100
 - Gluon saturation, initial collimated gluon emission
 - No collision energy dependence
 - Model overestimates associated yields at high multiplicity

5

Ridge in Z-Tagged Events Knospe

ATLAS studied ridge in Z-tagged pp collisions

6

- Presence of Z \rightarrow hard scattering in event (high Q²)
- − Proposal: presence of Z → smaller impact parameter (b) → smaller initial eccentricity → smaller v_2 (*cf.* inclusive pp sample)
- Template fits remove back-to-back dijets, corrections for pileup
- No significant difference between results in Z-tagged and inclusive events: presence of hard scattering does not affect ridge formation

Forward/Backward Ridge

- Ridge also observed at forward & backward rapidity (p- and Pb-going directions)
- Size of near-side ridge increases with multiplicity
- Structures at forward and backward rapidities have similar magnitudes for similar multiplicities

v_n Measurements

- A–A Collisions
 - Strong *N*_{ch} dependence
 - Ordering: $v_2 > v_3 > v_4$ (except for highest N_{ch})
 - Expected due to collision geometry (v₂), fluctuations (v₃, v₄)
 - Hydrodynamic calculations describe data well except for v_2 at low N_{ch}
- Small Systems
 - Weak N_{ch} dependence (similar values to A–A)
 - Ordering: $v_2 > v_3 > v_4$
 - Multi-particle results (v₂{4} & v₂{6}) less influenced by non-flow
 - Results cannot be explained by non-flow effects alone (PYTHIA)

v₂ of Identified Hadrons

Knospe

A–A collisions

9

- Mass ordering of v_2 for low p_T
- Baryon-meson grouping for high $p_{\rm T}$
- Indications of similar behavior in p-Pb

Evolution of p_T Spectra

- Hadron p_T spectra become harder with increasing multiplicity ($\langle p_T \rangle$ increases)
- Qualitative similarities for pp, p–Pb, and Pb–Pb
- pp & p–Pb: modification mostly for $p_T < 3 \text{ GeV}/c$

¹¹ Mean Transverse Momentum Knospe

- A–A collisions: mass ordering of $\langle p_T \rangle$ (see p and ϕ)
 - Consistent with hydrodynamic flow
- Small Systems:
 - Mesons (K^{*}, ϕ) have greater $\langle p_T \rangle$ than baryons w/ similar masses
 - More rapid increase in $\langle p_T \rangle$ with multiplicity
 - $\langle p_T \rangle$ values in high-mult. pp & p–Pb reach those seen in Pb–Pb

See also: CMS *PLB* **768** 103 (2017)

Blast-Wave Fits

- Simultaneous blast-wave fits of *p*_T spectra
 - ALICE: π, K[±], & p
 - CMS: $K^0_S \& \Lambda$
- A–A collisions
 - *T*_{kin} decreases, flow velocity (β_T)
 increases w/ centrality
- Small systems
 - Large increase of $\langle \beta_T \rangle$ w/ mult.
 - Higher T_{kin} values than A–A
 - Similar multiplicities: (β_T) (and (p_T)) greater in smaller systems
- Change of (p_T) vs. multiplicity qualitatively consistent with expanding fluid, but MPIs and/or color reconnection are possible explanations in small systems

J/ψ in p–Pb

- Prompt J/ ψ from initial hard scatterings
 - Modification due to initial-state effects (gluon density in nucleus, initial-state energy loss) or final-state effects (co-movers)
- Low p_{T} : suppression of prompt J/ ψ
- High p_T : R_{pPb} consistent with unity
 - Possible weak decrease from backward to forward y
 - Suppression in Pb–Pb not due to cold nuclear matter effects
- *R*_{pPb} in good agreement with model predictions
 Pb (high x)

$\psi(2S)$ in p–Pb

- More suppression of $\psi(2S)$ compared to ground state
 - Different nuclear effects on J/ ψ vs. ψ (2S)
 - Decent agreement with GCG + color evaporation model (in p-going direction), co-movers
 - Co-movers expected to affect $\psi(2S)$ more than J/ $\psi,$ this difference greater in Pb-going direction
 - Observed suppression pattern consistent w/ final-state effect

Y(nS) Suppression

- Y(1S) suppressed at low p_{T}
- Y(2S) suppressed w.r.t Y(1S)
- Suppression in forward (p-going) direction w.r.t. backward
 - Consistent w/ two predictions with nPDFs

Y(nS) Suppression

- Y(2S) & Y(3S) suppressed w.r.t Y(1S)
- More suppression with increasing multiplicity
- Final-state suppression mechanisms that affect excited Y states more than ground state?
- Y suppression pattern quite similar to situation for J/ ψ and ψ (2S)

p–He Collisions at LHCb

- SMOG system
 - Low-density noble gas injected into VELO vessel (~100x higher pressure than LHC vacuum)
 - Allows LHCb to operate in fixedtarget mode
- Measurements of p
 yields in p–He collisions
 - Uncertainties smaller than spread among various theoretical models
 - Will help shed light on p
 excess
 observed by AMS-02 and
 PAMELA: do those p
 come from
 cosmic-ray interactions with
 interstellar medium, or from Dark
 Matter annihiliation?
- ALICE studies of d
 and ³He
 also
 useful for Dark Matter searches

Direct Photons

- R_{pPb} of isolated direct γ :
 - Consistent with unity at positive η
 - Modest modification in Pb-going direction (more d quarks)
 - Data consistent with modification of PDFs, disfavor initial-state energy loss

Dijet Correlations

- Shapes of dijet angular correlation distributions and conditional yields are sensitive to gluon saturation at low x_A
- Azimuthal correlation functions:
 - Wider for dijets with large rapidity separation
 - − No significant broadening from $pp \rightarrow p-Pb$
- Conditional yields suppressed by ~20% for forward-forward dijets
 - Can constrain nuclear effects in low-x region (e.g. saturation)

Conclusions

- Strangeness production evolves smoothly with multiplicity
 - No energy or collision-system dependence
 - Magnitude of enhancement increases with strangeness content
 - Small systems: rope hadronization, core-corona effects?
- Near-side ridge in small systems
- v_2 in small systems not explained by non-flow effects alone
- p_{T} spectral shapes:
 - Increasing $\langle p_T \rangle$ and $\langle \beta_T \rangle$ with multiplicity (MPIs, color reconnection, flow?)
 - − Mass ordering of $\langle p_T \rangle$ in central A–A → violated in small systems (different trends for baryons vs. mesons?)
- Quarkonia
 - Suppression at low p_{T}
 - Excited states more suppressed than ground states (final-state effects)
 - Multiplicity dependence of Y(nS) suppression
- Measurements of p
 production in p–He collisions will illuminate the excess observed by PAMELA and AMS-02

Additional Material

Hadrochemistry: ϕ

- The ϕ meson (s \overline{s}) is a key probe in studying strangeness production
 - Does ϕ evolve as S=0 particle, or as if it had open strangeness?
- Small systems: increase in ϕ/π ratio with multiplicity
 - Inconsistent with simple canonical suppression
 - Qualitatively explained by rope hadronization (DIPSY) and core/corona (EPOS)
 - Connected to strong color fields/high density
- Ratios ϕ/K and Ξ/ϕ fairly flat across wide multiplicity range
 - The ϕ has "effective strangeness" of 1–2 units

Canonical Suppression

- Small systems: particles with open strangeness subject to canonical suppression, while φ is not
- ALICE observes increase in ϕ/π with multiplicity in pp
 - Not expected for simple canonical suppression
 - Does system drop out of equilibrium?

Rope Hadronization

- Groups of overlapping strings fragment with higher effective string tension
 - Enhances strange-particle production
 - Enhancement of $\boldsymbol{\phi}$ similar to open-strangeness hadrons
 - DIPSY (color ropes) qualitatively describes increase of ϕ/π with multiplicity

Knospe

Core/Corona Effects

- EPOS: describes pp, p–A, and A–A collisions with common framework
 - Collision divided into a core (QGP) and a corona of jets
 - Core evolves hydrodynamically
 - Hadronic phase with re-scattering and regeneration (UrQMD)

²⁶ Mean Transverse Momentum Knospe

- A–A collisions: mass ordering of $\langle p_T \rangle$ (see p and ϕ)
 - Consistent with hydrodynamic flow
- Small Systems:
 - Mesons (K^{*}, ϕ) have greater $\langle p_T \rangle$ than baryons w/ similar masses
 - More rapid increase in $\langle p_T \rangle$ with multiplicity
 - $\langle p_T \rangle$ values in high-mult. pp & p–Pb reach those seen in Pb–Pb

CMS PLB 768 103 (2017)

Baryon-to-Meson Ratios

- Baryon-to-meson ratios vs. p_T allow us to study the interplay of hydrodynamics and recombination
- Compare Xe–Xe & Pb–Pb: consistent results for similar multiplicities

27

- p/
 ratio is useful: baryon and meson with almost the same mass
 - Flat with p_T → consistent with hydrodynamic behavior, but can also be described by some recombination models
 [V. Greco et al, PRC 92 054904 (2015)]

- From low multiplicity (peripheral) to high multiplicity (central):
 - Baryon/Meson ratios depleted at low p_T
 - Enhanced at intermediate p_{T}
- Qualitative similarities between pp, p-Pb, & Pb-Pb

Knospe

 p/π PRC 99 024906 (2019) Baron/meson ratios in ੁੰ_ਦ 0.9 $0.50 < p_{_{
m T}} < 0.55 ~{
m GeV}/c$ 2.40 < p_ < 2.60 GeV/c $10.00 < p_{_{
m T}} < 15.00 \; {
m GeV}/c$ different p_{T} regions: 0.8 + μ⁺ 0.7 Low- p_{T} depletion and <u>0.6</u> + d 0.5 intermediate- p_{T} enhancement 0.4 Similar behavior for the three 0.3 0.2F systems 0.1 (×10) (×1) Λ / $K_{\rm S}^0$ pp: 6.50 < p₁ < 8.00 GeV/c $0.60 < p_{_{\rm T}} < 0.80 \; {\rm GeV}/c$ p-Pb: $6.00 < p_{T} < 8.00 \text{ GeV}/c$ Pb-Pb: $6.50 < p_{\tau} < 8.00 \text{ GeV}/c$ 0.8 0.6 0.4 pp: 2.50 < p₊ < 2.90 GeV/c p-Pb: $2.60 < p_{T} < 2.80 \text{ GeV}/c$ 0.2 Pb-Pb: 2.60 < p_ < 2.80 GeV/c (×2) (×4) (×1) 10 100 1000 1000 10 100 1000 10 100 $\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta \rangle_{\mathrm{l}\eta\mathrm{l}<0.5}$ Λ/K^0s pp p-Pb Pb-Pb ALICE

Knospe

- p/π PRC 99 024906 (2019) Baron/meson ratios in $(-\mu + \mu)/(\underline{d} + d)$ 0.50 < p_ < 0.55 GeV/c 2.40 < p₊ < 2.60 GeV/c 10.00 < p₁ < 15.00 GeV/c different p_{T} regions: Low- p_{T} depletion and intermediate- p_{T} enhancement 0.2 Similar behavior for the three 0.1 TeV systems pp (×1.5) 0.9 ^ک $0.60 < p_{_{T}} < 0.80 \text{ GeV}/c$ 6.50 < p₊ < 8.00 GeV/c 2.50 < p_ < 2.90 Ge Trend in pp described 0.8 0.7 qualitatively by color 0.6 0.5 reconnection (PYTHIA) and 0.4 color ropes (DIPSY); over-0.3 0.2 predicted by collective radial 0.1 (×2) 20 20 25 300 25 300 20 25 10 15 15 5 10 15 expansion in EPOS Λ/K^0 s $\left<\mathrm{d\textit{N}_{ch}}/\mathrm{d}\,\eta\right>_{\rm I\eta I<0.5}$ Pythia8 Monash NoCR - - - Pythia8 Monash WithCR DIPSY Color Ropes - · - EPOS LHC
 - · · HERWIG7

ALICE

Knospe

arXiv:1807.11321

Knospe

arXiv:1807.11321

Nuclei

Knospe

Thermal models

- Hadrons emitted in statistical equilibrium with chemical freeze-out temperature T_{ch}
- Yields proportional to $exp(-m/T_{ch})$
- Coalescence
 - Nuclei formed by baryons close in phase space after kinetic freeze-out
 - Nuclei may break up and re-form during hadronic phase
- Deuterons:
 - Coalescence in small systems and thermal production in A-A
 - Smooth transition between systems
 - Production controlled by system size
- ³He: factor of 5 difference in ³He/p ratio from p–Pb to Pb–Pb
 - But also a large gap in multiplicity
 - More data needed...

Deuteron Coalescence

 Coalescence parameter for nucleus *i* with mass number A:

$$E_i \frac{\mathrm{d}^3 N_i}{\mathrm{d} p_i^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$$

- Simple coalescence
 - Flat $B_2(p_T)$
 - Simple relationship between d & p v₂:
 - $v_2^{d}(p_T^{d})=2v_2^{p}(2p_T^{p})$
- Simple coalescence does not describe ALICE deuteron measurements in Pb–Pb
 - Describes lower energy A–A data
 - $-B_2$ flatter for smaller collision systems

3

5 6 p_ (GeV/c)

0

Deuteron Coalescence

 $E_{\mathrm{d}} \frac{\mathrm{d} \mathbf{r}}{\mathrm{d} p^3}$

 $B_2 =$

 Coalescence parameter for nucleus *i* with mass number A:

$$E_i \frac{\mathrm{d}^3 N_i}{\mathrm{d} p_i^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$$

- Flat $B_2(p_T)$
- Simple relationship between d & p v₂:
 - $v_2^{d}(p_T^{d})=2v_2^{p}(2p_T^{p})$
- Simple coalescence does not describe ALICE deuteron measurements in Pb–Pb
 - Describes lower energy A–A data
 - $-B_2$ flatter for smaller collision systems
 - $-B_2$ evolves smoothly with system size

Charm (Fixed Target)

- LHCb: first measurement of charm production in fixed-target mode at LHC
 - D⁰ and prompt J/ψ in p–He and p–Ar collisions
- Does the proton contain intrinsic charm?
- Production cross-sections compared to calculations without intrinsic (valence-like) charm contribution
 - No effect seen
 - Proves large Bjorken x:

Since
$$x \simeq \frac{2m_c}{\sqrt{s_{NN}}}e^{-y*}$$
,
large $x \rightarrow$ negative y^*

Knospe

Mid-Rapidity J/ψ R_{pPb}

