

biomedical research capabilities @ KVI-CART

- S. Brandenburg¹; L. Barazzuol²; S. Both²; R.P. Coppes²;
- M.J. van Goethem^{1,2}; B.N. Jones¹; P. van Luijk²
- ¹ KVI-CART, University of Groningen
- ² University Medical Center Groningen

- experimental facilities
- access procedures
- some examples of on-going research
 - radiation biology
 - proton therapy physics

KVI-CART accelerator facility

- superconducting cyclotron
 - multi particle; multi energy

KVI-CART accelerator facility

- focus: particle therapy research
 - radiation biology incl. small animal research
 - radiation physics
- some relevant beams
 - protons $E \le 190 \text{ MeV}; R_{H2O} \le 230 \text{ mm}$
 - helium
 - carbon
- $E \leq 90$ MeV/A; $R_{H2O} \leq 60$ mm
- $E \leq 90$ MeV/A; $R_{H2O} \leq 60$ mm

experimental facilities: current

irradiation facility

- irradiation in air
- passive scattering: up to 80 mm
 - carbon: up to 30 mm
- scanning: up to 100 mm
 - arbitrary pattern pencil beam

800

sse (Arbitrory Units) 600 400

- uniform
- optical tables ➡ flexible, reproducible
- homogeneity $\pm 2\%$ 1200 1000

irradiation facility

- irradiation in air
- passive scattering: up to 80 mm
 - carbon: up to 30 mm
- scanning: up to 100 mm
 - arbitrary pattern PBS
 - uniform
- homogeneity $\pm 2 \%$

irradiation facility

- longitudinal distribution
 - pristine Bragg peak
 - spread-out Bragg peak
- CW or pulsed
 - frequency $\leq 2 \text{ kHz}$
 - pulse duration \geq 50 μ s

beam intensity/dose rate

- beam intensity
 - protons few 10¹³ pps
 - helium few 10^{13} pps
 - carbon few 10¹⁰ pps
- proton, helium dose rate up to 500 Gy/s
 - dependent on field size
- 90 MeV/A carbon SOBP dose rate up to 200 Gy/min
 - higher at lower primary energy

experimental facilities: future

- image guided preclinical research
 - funded by
 - DUTCH CANCER SOCIETY
- project ingredients
 - new beam line
 - 3D X-ray imager
 - 3D optical imager
 - irradiation planning software
 - data management

- image guidance
 - CT + bioluminescence
- individual planning
- multiple modalities
 - PBS/scattering
 - shoot through/SOBP
 - minibeams
 - FLASH
 - protons, helium

source: Eric Ford, Seattle

- physics/technology challenges
 - dimensional scaling
 - beam shaping; range; positioning
 - irradiation planning
 - @ irradiation time
 - automated segmentation
 - Monte Carlo essential
 - dosimetry
 - very small fields; very high dose rates
- synergy with clinic (on-line adaptive planning)?

biological effectiveness proton helium carbon interaction particles with systemic therapies

biological optimisation treatment response at organ level

- targets
 - orthotopic tumor models
 - organ at risk sub-structures
- individual imaging
 - anatomical variations between animals
 - individually optimized irradiation plan
- new irradiation modalities: grid, FLASH
 - effect on therapeutic window

animal facilities

- single on site animal accomodation with IVCs
 - capacity 200 rats
 - no long term stay
 - two additional accomodations planned
- laboratory for animal handling prior and post irradiation
 - two additional labs planned
- workflow not breaking containment under development
 - mitigate issues with animal returning to origin

support for animal experiments

- provide one stop shop
 - experiment development
 - ethics authorisation process
 - animal procurement logistics
 - irradiation + follow-up
 - GronSAI imaging center
 - optical
 - molecular
 - CT
 - MRI
 - data management facilities

Open Access facility

- access based on scientific quality
 - evaluated by independent PAC
- user support by
 - EU-funded transnational access
 - ENSAR2 until March 2020
 - INSPIRE until March 2022

- new proposal under evaluation for period until mid-2024
- ESA: Biological Effects of Space Radiation

European Space Agency

• information: https://www.rug.nl/kvi-cart/research/facilities/agor/

radiation biology

- small animals: normal tissue damage
 - spinal cord
 - radiation drug interaction
 - salivary gland
 - heart lung interaction
 - brain
 - dose delivery technique
 - scattering
 - shoot through 150 MeV protons
- cell cultures and organoids
 - carbon < 90 MeV/amu
 - oxygen < 90 MeV/amu

radiation induced cognition defects

Rat brain

100% whole brain

50% anterior-posterior

25% anterior-central anterior-central posterior-posterior

Funding grants:

Left-right hemisphere

= irradiated

= non-irradiated

Behavioral tests

PET/MRI imaging

Brain tissue histology

CSF proteomics

L. Barazzuol, UMCG

radiation induced cognition defects

100% whole brain

50% anterior

radiation induced cognition defects

L. Barazzuol, UMCG

umcg

radiation induced lung toxicity

• test hypothesis: heart irradiation affects respiratory system

umcg

- unravel mechanism: pulmonary hypertension
- search for clinical evidence: retrospective study
- develop mitigation: prospective study + preclinical

radiation induced lung toxicity

- 50 % lung with/without heart
- heart (+ small part lung)
- observable: long term respiratory capacity

umcg

radiation induced lung toxicity

- radiation induced heart damage
 - increased pressure lung circulation
 - vascular damage
- impact respiratory capacity
- also observed in patients symptoms ~ heart failure
- preclinical study with drug

P. van Luijk, UMCG

MRI-guided proton therapy

- effect magnetic field on radiation response cell cultures
- up to 1 T no effects observed
- future (2020 2021): measurements up to 3 T

sb/STW141118/25

MRI-guided therapy

- interference MRI magnet dose delivery
- impact MRI magnet on dose delivery "easily" calculable
 - required accuracy level 10⁻⁴
- MRI imaging:
 - required accuracy level 10⁻⁶
 - image distortion
 - dynamics scanmagnet

live cell confocal microscopy

- test experiment successfully performed
- first full experiments autumn 2019
- grant application state-of-the art system in preparation

in vivo verification proton therapy

• near real-time PET imaging of 12N ($T_{1/2} = 11$ ms)

university of groningen

kvi - center for advanced radiation technology

• produced on 12C

in vivo verification proton therapy

- near real-time PET imaging of 12N ($T_{1/2} = 11$ ms)
 - produced on 12C
 - image long-lived background substracted
 - $\sigma = 1.1 \text{ mm} @ 10^9 \text{ protons}$

P. Dendooven, KVI-CART

acknowledgement

• research funding

Netherlands Organisation for Scientific Research

• access funding

European Space Agency

host institutions

• all colleagues for contributing