InspireProject

INfraStructure in Proton International REsearch

INSPIRE

ENLIGHT meeting, Caen, 2019

Outline

- 1. Project origin
- 2. Partners
- 3. Networking
- 4. Joint Research Activities
- 5. Trans-National Access

European Commission Research & Innovation - Participant Portal Proposal Submission Forms

Horizon 2020 Call: H2020-INFRAIA-2016-2017 (Integrating and opening research infrastructures of European interest) SECOND STAGE

Topic: INFRAIA-02-2017

Type of action: RIA (Research and Innovation action)

Proposal number: 730983-2

Proposal acronym: INSPIRE

Deadline Id: H2020-INFRAIA-2017-1-two-stage

Sources of INSPIRE

In the mid of this decade several new PTC in Europe started operation: Prague, Trento, Uppsala, Dresden, Krakow and several was under construction: Manchester, Groningen, Aarhus

Coordinator

Karen Kirkby

Started: March 1st, 2018 End: February 28th, 2022

European Commission Research & Innovation - Participant Portal Proposal Submission Forms

Horizon 2020 Call: H2020-INFRAIA-2016-2017 (Integrating and opening research infrastructures of European interest) SECOND STAGE Topic: INFRAIA-02-2017

> **Type of action: RIA** (Research and Innovation action)

Proposal number: 730983-2

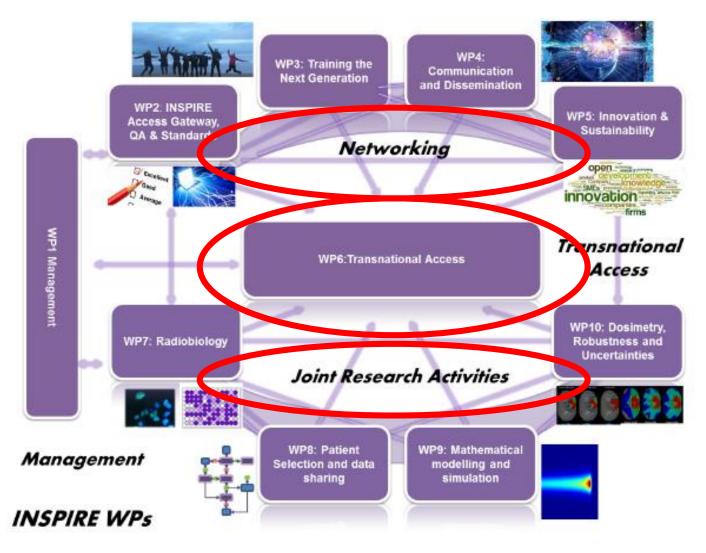
Proposal acronym: INSPIRE

Deadline Id: H2020-INFRAIA-2017-1-two-stage

Web page: https://protonsinspire.eu/

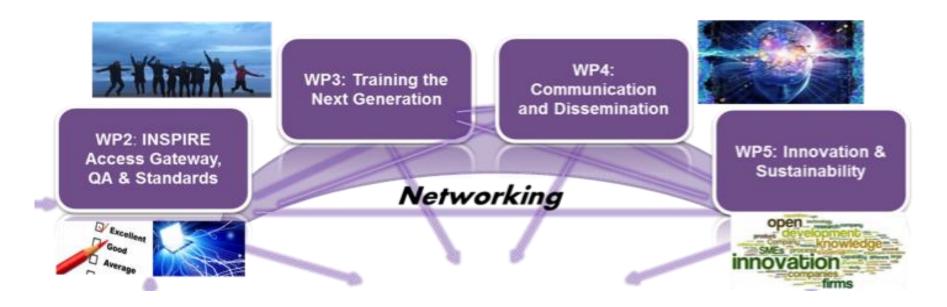
P. Olko IFJ PAN Kraków, Poland

- 1. THE UNIVERSITY OF MANCHESTER (UNIMAN),
- 2. THE CHRISTIE NHS FOUNDATION TRUST (THE
- **3. ACADEMISCH ZIEKENHUIS GRONINGEN**
- 4. UNIVERSITE DE NAMUR ASBL (UNamur)
- 5. RIJKSUNIVERSITEIT GRONINGEN (RUG),
- 6. INSTITUTE OF NUCLEAR PHYSICS PAN (IFJ
- 7. VARIAN MEDICAL SYSTEMS PARTICLE **THERAPY GMBH (Varian)**,
- 8. NUCLEAR PHYSICS INSTITUTE OF THE ASCR VVI
- 9. ISTITUTO NAZIONALE DI FISICA NUCLEARE
- 10. LIETUVOS SVEIKATOS MOKSLU **UNIVERSITETAS (LSMU)**,
- 11. PAUL SCHERRER INSTITUT (PSI),
- 12. ION BEAM APPLICATIONS SA (IBA),
- 13. AARHUS UNIVERSITET (AU),
- 14. TECHNISCHE UNIVERSITAET DRESDEN (TUD),
- 15. INTERNET-SIMULATION EVALUATION
- 16. INSTITUT CURIE (INSTITUT CURIE),
- **17. KOMMUNALFORBUNDET AVANCERAD** STRALBEHANDLING (SKANDION),

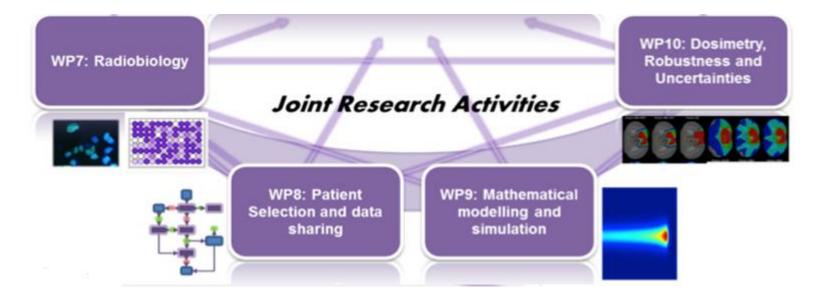

IRAN

IRAQ

SYRIA


Three pillars of INSPIRE

Networking, TransNational Access and Joint Research Activities



Networking

- WP2 INSPIRE Access Gateway QA & Standards
- WP3 Training the Next Generation
- WP4 Communication & Dissemination
- WP5 Innovation & Sustainability

Joint Research Activities

- WP7 Radiobiology (INFN)
- WP8 Patient Selection & data Sharing (UMCG)
- WP9 Mathematical Modelling & Simulation (TUD)
- WP10 Dosimetry, Robustness & Uncertainties (Unamur)

ENLIGHT meeting, Caen, 2019

JRA WP7 Radiobiology coordinated by INFN

7.1 Equipment and protocols for RBE studies:

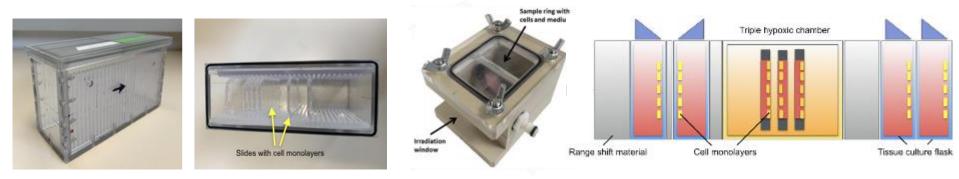
- Design the equipment and protocols for depth-dependent radiobiology experiments (2D and 3D cell cultures):
 - RBE-LET dependency for normal and tumor tissues;
 - Effects of fractionation;
 - Oxygen enhancement ratio (OER) (single dose or multiple fractions);
- Produce input for WP9 for functional (survival) and mechanistic (DNA repair) RBE modelling.

7.2 Equipment and protocols to study the effects of radio-sensitisation and radio-resistance:

- In vitro: design phantoms to study the effects of radio-sensitising agents in 2D and 3D cell cultures;
- In vivo: develop protocols for testing immunotherapy drugs in combination with proton irradiation;
- Enable preliminary experiments to investigate radio-protective effects of hibernation on small animals.

JRA WP7 Radiobiology deliverables (D) and milestones (M)

- MS7.1 Phantoms / end stations developed for studying RBE along the Bragg peak (M20).
- D7.1. Development and testing of advanced radiobiological phantoms / end-stations for RBE experiments along the Bragg peak using spot scanning or passive scattering (M36) (INFN)
- D7.2 Benchmark radiobiological models of hypoxia against experimental data; prepare paper for publication (M42). (NPI-CAS)
- D7.3 Protocols for in vitro analysis of dose response of radio sensitising agents with protons; prepare paper for publication (M38). (IFJ-PAN)
- D7.4 Preliminary experiments to investigate radio-protective effects of hibernation on small animals (M40), (INFN)



Phantoms and protocols for 2D and 3D cell cultures

• 2D phantoms for *in vitro* studies is already available for TNA and intercomparison of measurements

1D measurements in normoxic conditions

3D phantom: under development

Details already given by Olga Sokol

- Protocols for growing cells in Matrigel and alginate established
- First X-ray and ¹²C ion irradiations performed with cells in 3D

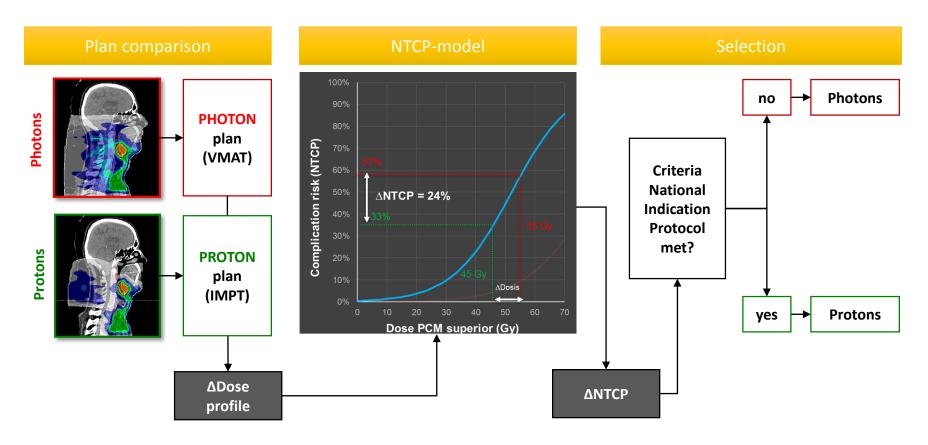
Alginate-based phantoms Matrigel-based phantoms

1D measurements in hypoxic conditions

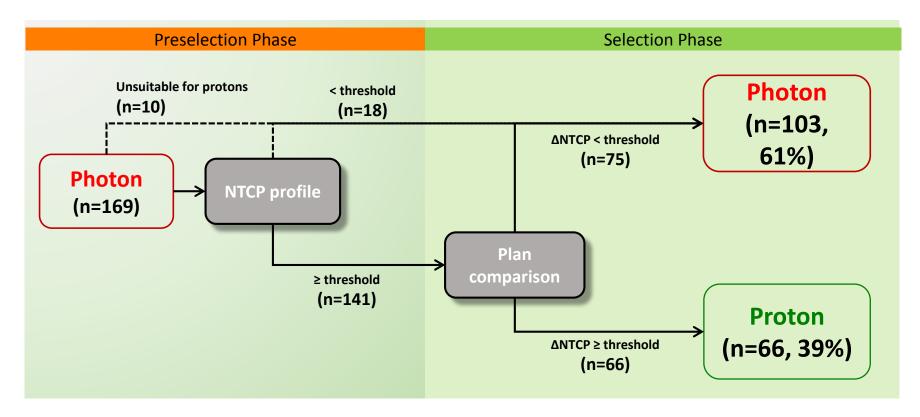
JRA WP8 Patient Selection & data sharing coordinated by UMCG

- Develop the NTCP model of patient selection for a number of tumour sites which are likely to be used in PBT
- Develop the indications list for Malthus so that it can be used for PBT scenario planning and demand modelling and can incorporate NTCP models in to its decision tree modelling.
- Develop automated probabilistic treatment planning taking input from WP7 and WP9.
- Aid in the development of national databases of PBT outcomes

JRA WP8 Patient Selection & data sharing deliverables and milestones


- D8.1 Definition of key parameters for NTCP based patient selection and tumour sites (M12) (IBA)
- D8.2 Incorporation of PBT indications into Malthus decision trees (M12) (UNIMAN)
- D8.3 Proto-type automated planning tool (42) (PSI)
- MS11 Extension of NTCP models to other tumour sites (M24)
- MS12 Version of Malthus incorporating NTCP models (M36

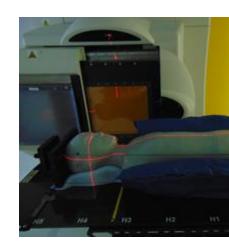
How does model-based selection work?



% of patients that qualify for proton

JRA WP9 Mathematical Modelling & Simulation coordinated by TUD

- Integrate HR and OER in to TOPAS nBio and compare with experiments in WP7
- Incorporate RBE into TPs and evaluate its effects
- Study the impact of passive scattering and spot scanning on RBE in TPs and compare with results from WP7
- Evaluate constant vs variable RBE plans wrt anatomical changes and organ motion during treatment
- Incorporate variable RBE into patient selection models (WP8)
- Study the effects of range uncertainties and their impact on TP


JRA WP9 Mathematical Modelling & Simulation deliverables (D) and milestones (M)

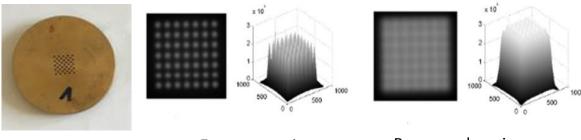
- D9.1: Report: Recalculation of treatment plans performed assuming a constant RBE=1.1, with two different models for variable RBE, including dependencies on beam quality, dose fractionation, OER and tissue type (M36) (TUD)
- D9.2: Simulator of proton PBS delivery (passive vs spot scanning) and with motion including dose reconstruction (M48) (TUD)
- D9.3 Report on post-treatment assessment of actually delivered dose in patients (M48) (IC).
- MS9.1 Incorporation of variable RBE into TPS; comparison of different models (M18)
- MS9.2 RBE model adaptation to biological data from WP7 completed (M42)
- MS9.3 Analysis of planned dose versus actual dose to patients and RBE considerations (M48)

JRA WP10 Dosimetry, robustness & Uncertainties coordinated by UNamur

- Develop new detector technology for fast pencil beam scanning including dosimetry for spatially fractionated therapy
- Develop a proton dosimetry standard for pencil beam scanning
- Develop tissue equivalent phantoms for monitoring dosimetry and changes in RBE along the Bragg peak in collaboration with WP7.
- Develop tissue equivalent zoomorphic and anthropomorphic phantoms for evaluating and cross comparing the performance of different detectors
- Carry out round robin experiments to compare dosimetry between TNA providers and inter-comparison of radiobiology using standard experiments
- Evaluate detectors for measuring range uncertainties and evaluate opportunities of using nanoparticles to enhance signals
- Investigate measurement of secondary dose delivered to patients

JRA WP10 Dosimetry, robustness & Uncertainties deliverables (D) and milestones (M)

- D10.1 Optimized and tested design of position and dose monitor for fast pencil beam scanning with high dose rates (M42) (Varian)
- D10.2 Develop tissue equivalent phantoms for monitoring dosimetry and changes in RBE along the Bragg peak (M24) (NPI-CAS)
- D10.3 Evaluate detectors for measuring range uncertainties and evaluate opportunities of using nanoparticles to enhance signals (M40) (UNamur)
- MS10.1 Decision of best detector technology for pencil beam scanning (M42)
- MS10.2 Determine if nanoparticles enhance prompt gamma signal (M18)



WP10 Dosimetry, Robustness and Uncertainties (IFJ PAN, Kraków)

Dose distribution in proton grid therapy

The aim of the work is to determine depth dose distributions and unwanted doses to patients due to scattered radiation in grid therapy with collimators.

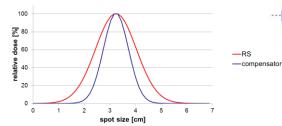
The first measurements with 60 MeV protons for small radiation fields (13 mm x 13 mm) and 1 mm mesh collimators demonstrated that the 5% uniformity of lateral dose distribution can be obtained at the depth of Bragg peak maximum.

2-D and 3-D dose distributions

Entrance region

Bragg peak region

3D technology for printed compensators and phantoms in proton therapy



$WER_{sample} =$	$\frac{R_{pristine} - R_{sample}}{L_{sample}}$
R – range L – thickness	s, 4 cm for PLA sample

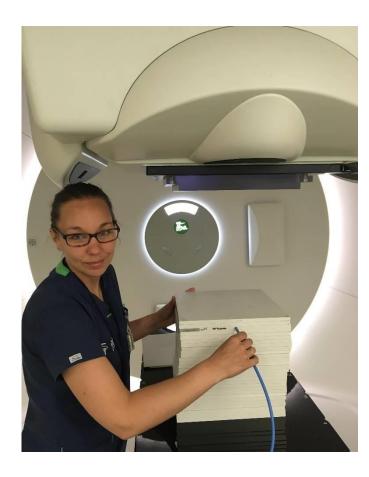
WER_{PLA} = 1.167 mm

Water Equivalent Thickness (WET) for different plastic filaments for 3D printers were experimentally determined for their potential use for compensators and dedicated phantoms in proton therapy.

First patient dedicated compensators were printed and tested for their properties of beam formation. The use of compensator reduced the lateral full width at half maximum (FWHM) as compared to Range Shifter by over 60%.

Transnational Access, TNA

What is Trans National Access, TNA?


TNA is 'free of charge' provision of access to a Research Infrastructure to selected researchers or research teams

The support of the infrastructure includes:

- free use of the infrastructure facilities
- administrative and logistical support
- technical and scientific support
- specific training for use of the infrastructure

The transnational programme also covers:

- travel,
- subsistence
- local accommodation

Trans-National Access - list of Eligible States

European Community

Austria	Latvia
Belgium	Luxembourg
Bulgaria	Malta
Cyprus	Netherlands
Croatia	Poland
Czech Republic	Portugal
Denmark	Romania
Estonia	Slovakia
Finland	Slovenia
France	Spain
Germany	Sweden
Greece	United Kingdom
Hungary	
Ireland	
Italy	
Lithuania	

Associated States

Albania Bosnia & Herzegovina Faroe Islands Georgia Iceland Israel Moldova Montenegro Norway Serbia Switzerland Tunisia Turkey Ukraine

➤ Third country users: up to 20% of the access can be provided to user teams with a majority of users working in third countries

Users working for SMEs exempted from requirement to disseminate results generated under Trans-national access

INSPIRE Transnational Access Providers

Access Provider	Infrastructure Name	Country Code	Contact
University of Manchester	PBT Research Room	UK	Karen Kirkby <u>Karen.kirkby@manchester.ac.uk</u>
The Christie NHS Foundation Trust	PBT Research Room	UK	Ranald Mackay <u>Ranald.mackay@christie.nhs.uk</u>
Academisch Ziekenhuis Groningen	Proton Therapy Centre Groningen	NL	Hans Langendijk j.a.langendijk@umcg.nl
Universite de Namur ASBL	Walloon Proton Therapy Centre	BE	Anne-Catherine Heuskin anne-catherine.heuskin@unamur.be
Rijksuniversiteit Groningen	KVI-CART	NL	Sytze Brandenburg <u>brandenburg@kvi.nl</u>
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences	Cyclotron Centre Bronowice	PL	Pawel Olko Pawel.Olko@ifj.edu.pl
Nuclear Physics Institute of the ASCR VV1	Proton Therapy Czech	CZ	Marie Davidkova <u>davidkova@ujf.cas.cz</u>
Nuclear Physics Institute of the ASCR VVI	Nuclear Physics Institute CAS	CZ	Marie Davidkova <u>davidkova@ujf.cas.cz</u>
Paul Scherrer Institut	Proton Therapy Centre	СН	Tony Lomax tony.lomax@psi.ch
Aarhus Universitet	Danish Centre for Particle Therapy	DK	Cai Grau <u>caigrau@dadInet.dk</u>
Technische Universitaet Dresden	Oncoray Proton Therapy Centre	DE	Esther Troost Esther.Troost@uniklinikum-dresden.de
Institut Curie	Centre de Protonthearpie d'Orsay	FR	Alejandro Mazal alejandro.mazal@curie.fr
Kommunalforbundet Avancerad Stralbehandling	Skandion Clinic	SE	Alexandru Dasu alexandru.dasu@skandion.se

INSPIRE TNA - how to apply?

Just fill the application form and send it by e-mail to Helena.j.kondryn@manchester.ac.uk

Application Form

Please email completed form (2 page maximum) to Helena.j.kondryn@manchester.ac.uk

Name of User Group Leader:	
Current role:	
Organisation:	
Address:	
Telephone number:	
Email:	

Please list all members of the User Team who will be accessing the infrastructure facility			
Name	Name Organisation (and country)		

Title of Project:

Infrastructure facility you	wish to access:
Total number of beam ti	ne required (hours):
Total number of visits:	

Project objectives:

Project description including activities to be undertaken:

Project outcomes:

Impact and use of results:

Estimate of total costs (in €)			
Air Fare	Train fares/Additional transport	Accommodation	Living Costs

INSPIRE TNA - how to apply?

Just fill the application form and send it by e-mail to helena.j.kondryn@manchester.ac.uk

Project objectives:

Impact and use of results:

Project outcomes:

Project description including activities to be undertaken:

Estimate of total costs (in €)			
Air Fare	Train fares/Additional transport	Accommodation	Living Costs

Please submit your proposal for INSPIRE TNA

Several hundreds of beam hours are available until February 2022

Priorities are for groups from countries without Proton Therapy infrastructure

Web page: https://protonsinspire.eu/

ENLIGHT meeting, Caen, 2019

