NanOx, a new multiscale model to predict biological effects of ionizing radiation

M. Beuve (PRISME, IPNL)

- NanOx... to predict what ?
- Results
- Characteristic features of the model
- Theoretical framework in brief
 - Non-local events
 - Local lethal events, threshold effect ?--
- Towards a clinical application

cell survival

- Interesting endpoint
 - → integrates all death pathways
 - → allows to derive Tumor Control Probability
 - → Linked to deterministic effects in healthy tissues
- Depends on:
 - Particle type, energy and LET
 - Cell type, environment, phase
 - Dose, dose per fraction ...

Dose (Gy)

V79 cells, $\alpha(LET)$

ENLIGHT - M. Beuve

V79 cells, α(LET) up to Argon

CHO-K1 cells, α(LET)

ENLIGHT - M. Beuve

HSG cells, α(LET)

- NanOx... to predict what ?
- Results
- Characteristic features of the model
- Theoretical framework
 - Non-local events
 - Local lethal events, threshold effect?
- Towards a clinical application

NanOx: Statistical theory

C_N: Cell configurations

- No explicit description of the communications between cells
- ⇒ One representative cell

C_K: Irradiation configurations

- Ignoring beam-time structure
 - No dose-rate effects
- Irradiation configurations
 - K: fluctuating number of tracks
 - C_K: Positions + tracks details

$$S(D) = \sum_{K=0}^{\infty} P(K, D) \times \langle {}^{CK,CN} S \rangle_{CK,CN}$$

NanOx: Multi-scale model

- Full statistical model
 - Dramatic computer resource
 - patient : 2 Gray in 10x10x10 cm³
 - 6.10¹⁷ ionizations!
 - Cell in flasks : 5 Gray in 5x5x0.1cm³
 - 1,5.10¹⁶ ionizations !//
- Multi-scale approach
 - Simplifications and approximations

NanOx: Local and non local effects

Postulate:

$$^{CK,CN}S = {^{CK,CN}S_{local}} \times {^{CK,CN}S_{non-local}}$$

- Local lethal events
 - Non correlated biological events
 - Inducing <u>directly</u> cell killing
 - Produced by physic-chemical events at <u>local scale</u>
 - complex DNA lesions (10 nm),
 - histones (30 nm),
 - telomeres (100 nm)
- Non-Local events : The other events

Local scale = Spatial extension small enough so that the induced physical events are due to <u>one incident particle</u> when irradiating with clinical doses.

Nanox: Non-local effects

- Literature:
 - Microdosimetry ⇒ interaction of two sub-lesions
 - Two-stage model [Kundrat et al.] ⇒ statistics in impact number
 - Ion-kill / γ -kill [Katz et al.] inter-track effects
 - ⇒ Micrometric target + multi target theory
- Our idea: Test a (new) concept of global events

- "Accumulation of sub-lethal damage, oxidative stress, non-targeted events... that are difficult to manage"
- Postulate: Global events

$${^{CK}S_{non-local}} = {^{CK}S_{global}}$$
 ${^{CK}S_{global}} = g({^{CK}X})$

 $^{\it CK}X$ characterizing the global effects at global scale

Nanox: Non-local effects

Oxidative stress

- X = Y (Y for yield in the sensitive volume)
- LQ: $S(Y) = \exp(-aY-bY^2)$
- Y = yield of OH at $10^{-11} s$

Chemical specific energy

- Ž=RCE x Z
- RCE=relative chemical efficiency
- $S_G = \exp(-\alpha_G D \beta_G D^2)$

Note: we set $\alpha_G = 0$ and $\beta_G = \beta_r / \eta$

Nanox: Local lethal effects

Postulate: Local lethal events

- Represented by the activation of a local target
- N targets distributed in sensitive volume
- Probability for target activation:
 - a simple function f(CKz) of a local quantity CKx
 - CKx: restricted specific energy at local scale

$$S_L = \prod_{i=1}^{N} \left(1 - f(^{CK}x_i) \right)$$

Definition: Effective local function

$$F(x) = -N \times \ln(1 - f(x))$$

F as a linear combination

I. Decomposition on a basis:

$$F(z) = \sum_{i} \omega_{i} F^{i}(z)$$

II. Physical constraint: F(z) increasing function

III. Experimental data constraint

=> to optimize the weights of the liner combination

Restricted specific energy (Gy)

Lethal function: Results

Threshold saturation

Biological interpretation?

- - \ NanOx... to predict what?
 - Results
 - Characteristic features of the model
 - Theoretical framework
 - Non-local events
 - Local lethal events, threshold effect
 - Towards a clinical application

Parametric lethal function

Erf-like function

- Easier to manage, compatible with clinical application
- Few free parameters

$$F(^{c_K}z) = \frac{h}{2} \left[1 + \operatorname{erf}\left(\frac{^{c_K}z - ^{c_K}z_0}{\sigma}\right) \right]$$

h: maximal value

 z_0 : threshold position

σ: width of the increase, less important

NanOx parameters

Study of the influence of Nanox parameters: Monini et al.,

Cancer (Basel) 2018 Mar 21;10(4). pii: E87

It is possible to get good agreement between NanOx predictions and experimental data (for V79, HSG and CHO-K1 cell lines) with only 5 biological data:

- · Nuclear size of the cells
- $\alpha_{\rm ref}, \beta_{\rm ref} ({\rm photons})$
- α ion high LET
- · α ion intermediate LET

Conclusion

- NanOx: full stochastic and multiscale model (from nano scale)
- Innovative features
 - New quantities: restricted specific energy, RCE and chemical specific energy
 - Effect of threshold and saturation in the local effects
- Good agreement with experimental dat for V79, CHO-K1, HSG
 - Better (χ)² score than MKM and LEM
- Compatible with clinical application

Perspectives

- First version: room for improvement
 - lethal function
 - global function
 - consider other non-local events...
- Challenging with other experimental data
 - Mesurement with biologists of the team:
 - Raadiograaff, GANIL, INFN-LEGNARO ...
 - Evaluation in clinical conditions (SOBP)
 - CNAO ?, NIRS
 - Arronax: SOBP of Helium in progress

SOBP:ARRONAX

Outlook

Incorporation into Geant4 DNA and Gate at multiple levels:

- Macroscopic level: table of Nanox prediction
 - ⇒ application for hadrontherapy
 - Collab.: LPC Clermont; CREATIS => 3D biological Dose
 - Collab. : LIRIS => 4D Biological Dose
- Microscopic level: Nanox calculations by trajectories
 - ⇒ applications for BNCT, vectorized radiotherapy, better description of low energy fragments in hadrontherapy
 - Collab. : LPSC Grenoble, Univ. of Rosario (Argentina)
- Nanoscopic level:
 - nanotargets in realistic cell geometry
 - realistic representation of nano targets (DNA, lyososmes, mitochondria..)
 - introduction of biological mechanisms

Partners

Collaborators

- biologists of the team
- LPC ClermontCIMAP (Caen)
 - LNL (Legnaro)
 - Arronax/Subatech (Nantes)

(C Rodriguez et al.)

(L Maigne et al.)

(B. Gervais, E. Balanzat)

(R. Cherubini et al)

(C. Koumier et al)

Acknowledgements

- INCA
- **Labex Primes**
- GdR MI2B

Backup

NanOx parameters

• α ion high LET
• α ion intermediate LET
• α_{ref} , β_{ref} (photons)
•Nuclear size of the cells

	Experimental evidence		Fixed	
	Fit	Simple measure	Cell line independent	To be studied
F(z)	Н	Micro targets size	t_{RCE}	Nano targets size
	\mathbf{z}_0	$eta_{ m ref}$		$\alpha_{ m G}$
	σ			

Modeling relies on 5 parameters associated to a specific cell line!

Nanox: Local lethal effects

- What could be x?
 - ionization, core ionization, energy, radical productions, local heating...
- Simplifications
 - Restrictive specific energy deposited_into a target by CK
 - CKx = CKz:
 - Monte Carlo simulation
 - ✓ Gervais et al. 2006, Beuve et al. 2009

$$Z = \frac{1}{m} \sum_{j \in R} \varepsilon_{j, (R=restricted \ events)}$$

- Target :
 - Cylinder// Beam axis
 - Radius=Length= 10nm
 - Uniformly distributed over the sensitive volume
- Sensitive volume
 - Cylinder
 - Size: cell nucleus

