

A PARADIGM TO EXPLAIN THE DIFFERENTIAL EFFECTS OF CARBON ION AND X-RAY IRRADIATION ON TUMOR CELLS

Claire Rodriguez-Lafrasse Laboratory of Cellular and Molecular Radiobiology UMR 5822 CNRS IN2P3 Lyon-Sud Medical Faculty

Promising clinical results of Pr Tsujii (2003): ballistics and high RBE of carbon ions

Specific molecular mechanisms involved in response to carbon ions that could explain the clinical response and the high RBE?

Irradiation facilities

Carbon ions:

- LET 33,6 keV/μm (75 MeV/n) GANIL, Caen (2003 -...)
- LET 184 keV/μm (11,4 MeV/n) GSI, Darmstadt (2004-2012)
- LET 13 keV/µm (SOBP 290 MeV/n) HIMAC, Chiba (2016-...)

Photons: - 250 kV Lyon-Sud irradiator (X-Rad 320)

Pardigm of the stealth bomber to explain the tumor cell response to carbon ions

Bomber

Stealth

relies on the spatial distribution of reactive oxygen species (ROS) at the nanometric scale

Monte Carlo simulations of OH° radicals

2 Gy carbon ions (physical equivalent dose)

1 Gy carbon ions (biological equivalent dose)

- Very different local distribution at the nanometric scale:
 - dense and homogenous (photons)
 - clusters around tracks (carbon ions)

averaged-dose LET of SOBP: 13 keV/µm (NIRS irradiation)

Very different consequences at the cellular level

C. Monini & M. Beuve

The bomber effect at the DNA level

✓ Locally Multiply Damaged Sites (LMDS)

- Direct and indirect effects
- Clusters of irreparable DNA lesions

Courtesy C. Fournier GSI

The bomber effect at the DNA level

More non-repaired double strand breaks

Chromosome loss: specific signature

Hanot, Plos One 2012

120h

At the telomeres' level ?

CG repeats are highly sensitive to oxidative stress: increase of telomere's lenght in tumor cells by telomerase to protect chromosomes' end

Glioblastoma patients with long telomeres = resistance to radiotherapy = lower survival

Sampl et al., 2012

The bomber effect at the DNA level

Correlation between telomeres' length and radioresistance in 12 glioblastoma cell lines irradiated with photons

The bomber effect at the DNA level: independent of telomeres' lenght

Ferrandon et al., Mol Neurobiol, 2013

- Glioblastoma patients with long telomeres can advantageously benefit from a carbontherapy

Consequence of the bomber effect: cell death

- No specific mechanism: early apoptosis or mitotic death + p53-independent
 - ceramide-dependent

apoptosis (Alphonse et al. BMC Cancer 2013; Ferrandon et al Cancer Letter 2015)

 More efficient on cancer stem cell killing (Bertrand et al. Stem Cell 2014; Moncharmont et al. 2016)

Consequence of the bomber effect:

\checkmark Cell killing independent of the O₂ concentration

Interest in the treatment of hypoxic tumors

Wozny et al., Br J Cancer 2017

C. Rodriguez-Lafrasse ENLIGHT 2019

Local dose distribution of ROS → few/no activation of cell survival and defense pathways

Wozny et al. In preparation

Less DNA Damage detection (nucleoshuttling of ATM) under normoxia or hypoxia

Low-LET radiation

Homogeneously dispersed clusters

Numerous ATM monomers

Maalouf et al. IJROBP 2019

Wozny et al. In preparation

✓ No HIF1- α stabilisation:

Major transcription factor involved in the response to hypoxia

Wozny et al. Br J cancer 2017

participate to the absence of oxygen effect

Adapted from Howell and Tennant, 2014

*

The stealth effect

✓ No invasion-migration of CSCs OGv 10 2,0 % of cells 2Gy X-rays (Montcharmont et al. Oncotarget 2016; 8 1,6 2Gy C-ions Wozny et al. Cancers 2019) Migration 6 1,2 Less metastases *** 4 0,8 2 0,4 **Photons** 0 0.0 Normoxia: ↗ EMT* SQ20B-CSCs Normoxia 3 FaDu-CSCs Normoxia 2,0 % of cells 10 1,6 8 Invasion 1,2 6 *** **C-ions** Normoxia: L EMT* 0,8 4 2 0,4 0 0,0 SQ20B-CSCs Normoxia S FaDu-CSCs Normoxia Epithelial-to-mesenchymal transition

✓ Significant decrease of MMP-2 concentrations:

a major metalloprotease involved in the degradation of the extracellular matrix

Wozny et al. Cancers 2019

✓ Few/no activation of invasion/migration signaling pathways

Conclusions

- Answer to the initial question: Molecular mechanisms
 specifically involved in the tumor response to carbon ions!
- ✓ Stealth bomber pardigm:

Bomber effect

- Increased DNA damage
- No oxygen effect
- More cell death

- Lower DNA damage detection and repair
- No HIF1α stabilization
- No invasion/migration
- No/lower activation of cell survival pathways

New question: Sequence of treatment associating carbon ions and photons?

Acknowledgement

UMR CNRS 5822 LRCM : C. Rodriguez-Lafrasse

- M-T Aloy
- G. Alphonse
- D. Ardail
- P. Ceruse
- A. Gauthier
- J-B. Guy
- R. Ladjohounlou
- P. Lalle
- A. Lauret
- S. Louati
- N. Magné
- C. Malesys
- V. Varoclier
- A.S. Wozny

PHABIO: Pr M. Beuve

- E. Testa
- C. Monini

Collaborations

...

Y. Saintigny (IRCM-DSV-CEA) C. Fournier (GSI) G. Vares (OIST) T. Nakajima (NIRS) O. Tillement (ILM) M Janier (HCL) JL Ravanat (CEA) JC Monboisse (CNRS 7369) C Tomasetto (IGBMC) MJ Stazia (CDiReC)

Thank you for your attention !

