

New Developments in Accelerators and Gantries for Particle Therapy

Marco Schippers,

ENLIGHT Caen, July 3, 2019

Paul Scherrer Institut, Villigen, Switzerland

Contents

New Developments in accelerators & gantrys

Developments in Accelerators and Gantries for Particle Therapy

Continuous scanning: **Fast** dose delivery → prevents motion effects

To vary energy at **Cyclotron:** Decrease energy with degrader

230/250 MeV cyclotron

+ all following magnets:
1% field change
50-80 ms (PSI)

Developments in Accelerators and Gantries for Particle Therapy

Synchrotron

Protons only:

(Ø ~8 m)

Extracted

beam

Set beam energy

NIRS: Y. Iwata et al., MOPEA008, Proc. IPAC'10

Compact synchrotron

ProTom 330 MeV

Installed at: 2013 McLaren, Flint (Mi) 2019 MGH Boston (Ma)

- 220 MeV
- First facility in Hokkaido started 2013

Developments in Accelerators and Gantries for Particle Therapy

Characteristics of Synchrotron

=> a synchrotron provides:

- ions (if designed for)
- adjustable energy per spill (recently: during spill)

Working on:

- increase average intensity (\rightarrow increase ring filling)
- reduce intensity noise (\rightarrow feed back to RF-knock Out)
- decrease footprint (\rightarrow layout + SC magnets)

Cyclotron

Developments in Accelerators and Gantries for Particle Therapy

Small cyclotron: strong Magn.-field

However: at very strong magnetic fields:

Iron is saturated

 \rightarrow no iron hills/valleys for vertical focusing

→ Use natural field shape for vertical focusing

⇒ BUT then... Magnetic field decreases with radius

$$\Rightarrow \frac{T_{circle}}{} \uparrow$$

Developments in Accelerators and Gantries for Particle Therapy

PAUL SCHERRER INSTITUT

Synchro-Cyclotron

 T_{circle} increases with radius.

Remedy: decrease
$$f_{RF}$$
 as $f_{RF} = 1/T_{circle}$

= synchronous with radius and extract

Repeat 100-1000/sec → PULSED beam

(=> typ 10-30% accuracy)

=> Spot scanning requires >2 pulses per spot.

Developments in Accelerators and Gantries for Particle Therapy

Cyclotrons for proton therapy

Superconducting Coils

IBA (1996) , SHI 250 Tons Isochronous Cyclotron

> Varian (2005) 90 Tons Isochronous Cyclotron

IBA (2018) 60 Tons **Synchrocyclotron**

MEVION (2013) 15 Tons Synchrocyclotron

Developments in Accelerators and Gantries for Particle Therapy

fast intensity control

=> a cyclotron provides:

- continuous beam (but **synchro**cycl: **pulsed**)
- very fast and accurate intensity control
- fast E change with degrader and fast magnets
- small footprint

In development:

- higher dose rate
- smaller/ lighter /cheaper
- carbon ions

Linac 230 MeV

Spin-off from TERA and CERN:

RFQSide Coupled $\rightarrow 5$ MeVDTL $\rightarrow 37$ MeV

Coupled Cavity Linac 20 MeV/m →230 MeV

AVO, ADAM: A. Degiovanni et al. 2016

Developments in Accelerators and Gantries for Particle Therapy

Coupled Cavity Linac

Standing wave 3 GHz: **strong E field** possible: 20 MeV/m

Linac advantage: Fast Energy change by switching cavity power

Developments in Accelerators and Gantries for Particle Therapy

Other Developments in Accelerators and Gantries

Laser driven proton accelerator

Proton therapy: single-room facility

Mevion

Varian Probeam

IBA Proteus one

Proteus ONE

Developments in Accelerators and Gantries for Particle Therapy

NEW: SC gantries

NIRS, Japan, since 2017: C-ions

SC360 of ProNova: protons

Developments in Accelerators and Gantries for Particle Therapy

NEW optics in SC gantry design

SC magnets in **GANTRY**:

Proton gantries **Not** much smaller diameter Much **less weight** New beam **optics** (→ treatments) possible

Developments in Accelerators and Gantries for Particle Therapy

GaToroid (CERN)

Arc Scanning

madife

Treatment with an arc, (= continuous angular range)

Developments in Accelerators and Gantries for Particle Therapy

Fast Proton-**Arc** Scanning (PSI)

No moving magnets Extremely fast continuous arc irradiation

Patent pending (applied for)

Developments in Accelerators and Gantries for Particle Therapy

New Developments

New accelerator types:

Nice ideas and great developments!

But do not only check price:

- What is the **advantage**?
- When available?

THE ONLY MOTIVATION for Particle Therapy !!

- Is treatment quality a now ?
- How is organisation of supplier: Certification (FDA CE...), service, upgrades?

Developments in Accelerators and Gantries for Particle Therapy