

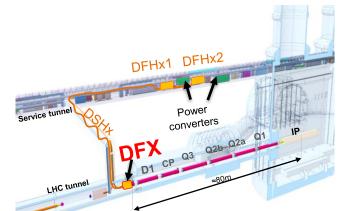
DFX instrumentation requirements

J. Fleiter

Conceptual design review of the DFX 31 Jan 2019 (Indico/event/783116)

Outline

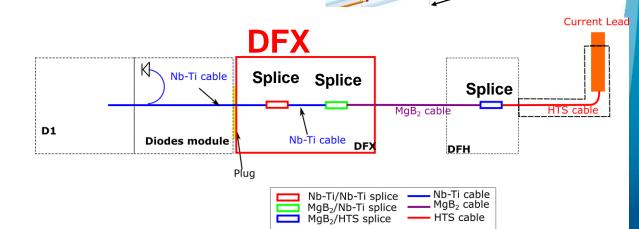
DFX instrumentation requirements:


- Cryogenic
- Electrical Protection of Circuits
- Vacuum

Overview of electrical circuits

The cold powering system of Inner triplets consists of:

- 2 x 18 kA MQXF main circuit
- 3 x 7 kA MQXF trims
- 2 x **13 kA D1 circuit**
- 12 X 2 kA MCBXF circuit



- The DFX located in the LHC tunnel will host the MgB₂/Nb-Ti splices and the Nb-Ti bus bars
- A total of 19 branches of circuits routed via DFX

Overview of electrical circuits

- Each branch of circuit (WP6a) consists of:
 - Sc cables
 - Nb-Ti bus bar passing trough the plug (~1-5m long) DFHx1 DFHx2
 - Nb-Ti bus bar extension (~1-5 m long)
 - MgB₂ cable (~100 m long)
 - HTS cable (~4 m long)
 - Splices
 - NbTi/NbTi
 - MgB₂/NbTi
 - HTS/MgB₂

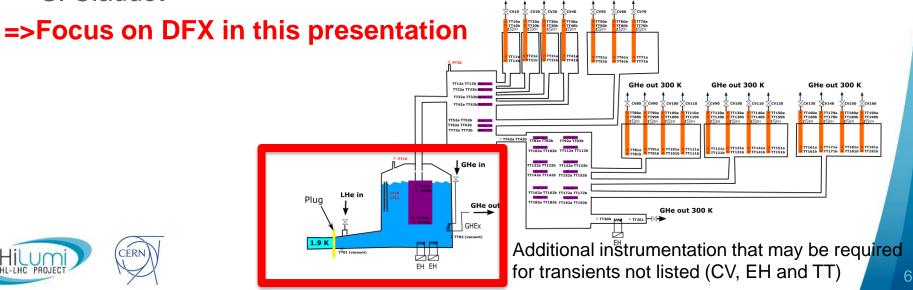
Service tunnel

LHC tunnel

Powe

converters

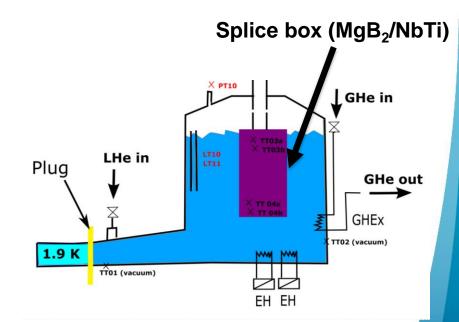
D1 CP Q3 Q2b Q2a Q1


Cryogenic requirements

- Immersion of Nb-Ti/MgB₂ splices and Nb-Ti bus bars in saturated LHe bath at 1.3 bar=> regulation of level required
- Generate from the LHe bath, a GHe mass flow to:
 - Maintain the MgB₂ cable of the Sc Link below 17 K
 - Maintain all the MgB₂/HTS splices (DFH box) below 17 K
 - Thermalize to 50 K the cold terminal of the HeX of each current lead

General cryogenic layout of Sc Link for triplets

- Feedthroughs for cryo Instrumentation of DFX located in DFX
- No routing of cryo instrumentation of DFH and current leads via the DFX
- General cryogenic instrumentation layout of Sc Link elaborated with S. Claudet


Cryogenic instrumentation of DFX

For the cryo-operation of DFX we will need

- 6 Thermal transducers (TT) Cernox
 - Two in vacuum attached to He tank
 - 4 in the splice box (He tank)
- Three heaters
 - I Ghe/LHe Heat exchanger
 - 2 resistive Heaters (includes 1 spare)
- 1 He pressure gage

CERN

- Two LHe level transducers
- Cryo valves part of cryo jumper

Elaborated in collaboration with S. Claudet

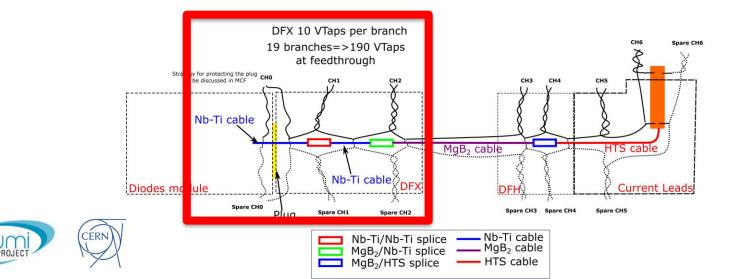
 \sim Additional instrumentation that may be required for transients not listed (CV, EH and TT)

Cryogenic instrumentation of DFX

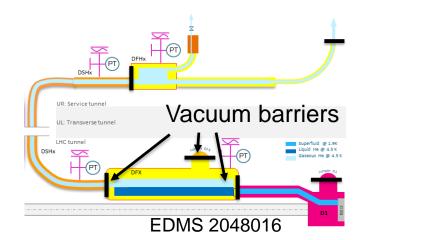
- Temperature transducers wiring:
 - 4 wires per probe
 - 2 probes in vacuum=> 8 wires at feedthrough
 - One probe being the spare of the other, located on different place
 - >1 m long wires, no thermalization required
 - Wires manganin AWG 36 (EDMS 320597)
 - 4 probes in LHe => 16 wires at feedthrough:
 - Wires Cu AWG 32 (EDMS 320597)
- LHe level transducers wiring
 - The two probes shall be (by design of DFX) easily replaceable for unscheduled repair work interventions
 - Wires of the probe not yet defined
- Electrical heater wiring not defined yet (Nb. of spare wires and section)

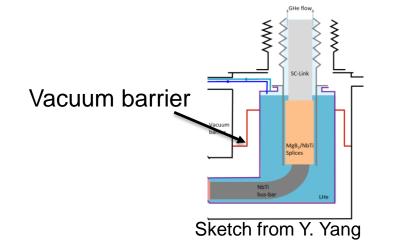
Electrical Protection requirements

- Each of the circuit of the Sc-Link shall be protected by a dedicated Quench Detection System that:
 - Detect any quench or detached VTaps
 - Triggers the removal of energy from the circuit (strategy depends on the circuit): fast abort, EE system, quench heater
- Requirements for the protection of the Sc-Links components presented by Amalia in July 2017 (Indico/20170703)
 - Active protection of superconducting components and current leads
 - Protection thresholds: 100 mV for the leads, 1-5 mV for HTS cable, 50-100 mV for each MgB₂ cable.
 - Monitoring of individual splices (MgB₂ to HTS, MgB₂ to Nb-Ti and Nb-Ti to Nb-Ti)


Instrumentation for circuit protection (DFX)

- Each branch of circuit (19 branches) equipped with VTaps
- Pairs of VTaps formed within the DFX
- Spare for all VTaps
- Feedthrough for VTaps on DFX
- Design of feedthrough(s) shall consider the different electric potential of the circuits
- Wire use for VTaps Cu AWG 26 (EDMS 2030599)


Instrumentation for circuit protection


- NbTi bus bars, NbTi/NbTi splices and MgB₂/NbTi splices protected at the level of DFX
- A total of 10 VTaps per branch of circuit =>190 VTaps
- Each NbTi bus bar of plug protected via a specific VTap paired to another located in diode module

Vacuum instrumentation of DFX

The cold powering chain of IT made of three vacuum volumes (EDMS 2048016) Vacuum barrier DFX/DSH embedded in the DFX

 Each of the two vacuum volume of DFX equipped with two pressure transducers (type to be defined)

Summary

- Instrumentation in DFX:
 - Cryo:6 Temp probes, 2 Level gages, one pressure transducer, one GHe/LHe heat exchanger, two resistive heaters
 - **Protection**:190 Vtaps over the 19 branches of circuit
 - Vacuum: two times two transducers (type to be defined)
- Design of feedthrough and piping should account for possible reserve spare instrumentation if required
- Design of feedthrough should consider the different electric potential of the circuits (VTaps)

13