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Main avenues of research

Higher-curvature corrections to General Relativity: towards an 
effective theory of Quantum Gravity

Strings on integrable deformations of AdS5XS5 

• non-perturbative phenomena in QCD-like theories

• models for lower dimensional (condensed matter)
- topological phases, quantum criticality
- phonons and translational symmetry breaking

• time dependent processes (needs numerical Relativity)
- dynamical phase transitions
- driven systems and quenches
- thermalization at strong coupling

Holographic tools for strongly coupled quantum systems



holographic tools for
strongly coupled quantum systems
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Geometries States

The holographic duality maps quantum problems at strong coupling 
and large number of degrees of freedom in 4d QFTs into a classical field 
theory of gravity in 5d with certain boundary conditions (AdS).

top-down versus bottom-up



We construct a black hole geometry generated by the intersection of D3-branes 
and flavor D5-branes along a 2+1 dimensional subspace. The solution is analytic 
and dual to a 2+1 dimensional defect in a 3+1 dimensional gauge theory. The 
smeared background can be regarded as a holographic multilayered system.

J. M. Penín, A. V. Ramallo, D. Zoakos
Anisotropic D3-D5 black holes with unquenched flavors, JHEP 1802 (2018) 139

Y. Bea, N. Jokela, A. Pönni, A. V. Ramallo
Non-commutative massive unquenched ABJM, Int.  J. Mod. Phys. A33 (2018) 1850078

We study non-commutative massive unquenched Chern-Simons matter theory 
using its gravity dual. We construct a new background by a TsT-transformation.
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Figure 4: String embeddings for various values of ⇥. Dashed curved correspond to the
flavored background (✏̂ = 1) and solid lines represent the flavorless case.

Thus in the high angular velocity regime E ⇠ p
J1. The Regge slope is

↵0

eff

=
J1
E2

=
p
h(z

D2)↵
0. (3.36)

The Regge trajectories are not a↵ected by non-commutativity but they are a↵ected by flavor
e↵ects encoded in h(z

D2).

3.2.2 Flavor e↵ects

We can redo the our analysis in the presence of flavors in the background. Everything else
carries to flavored case unchanged except the metric function h(r) now interpolates between
two AdS4-like behaviors between the IR and UV.

When turning on flavors in the background, power law exponents (3.29) and (3.30) char-
acterizing the relation of quark separation to angular velocity remain unchanged. On the
other hand, the relation between the meson energy E and angular momentum J1 is a↵ected.
The e↵ect is illustrated in figure 5. Turning on flavor increases meson energy for a fixed
value of angular momentum. This can be attributed to the dissipation e↵ect. By keeping
the angular frequency fixed, it is clear that it takes more energy to sustain this frequency in
the soup of unquenched flavors.

4 Two-point function

Now we turn to the two-point function of massive operators in the non-commutative back-
ground. As we are interested only in the very massive operators, we can make use of semiclas-
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G. Itsios, N. Jokela, J. Järvelä, A. V. Ramallo, Low-energy modes in anisotropic holographic fluids, 1808.07035

We studied the low-energy collective behavior of spatially anisotropic dense 
fluids in four spacetime dimensions by using a top-down holographic model.

Figure 3: The real part of !̂ for di↵erent d̂ scanned at various k̂x and k̂z. The deep blue
indicates the value zero (hydrodynamic regime) while lighter shades are non-zero and positive
(collisionless regime). Completely white regions we have not scanned over.
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Figure 4: The DC conductivity for various d̂. The circles correspond to numerical values
while the curve is our prediction for �̂xx(! = 0) = �̂zz(0) ⌘ �̂L.

becomes increasingly more negative. The behavior of �̂zz and �̂xx di↵er significantly which
was to be expected from our analytical computations. The imaginary part of �̂zz becomes
negative at very low momenta at low d̂ while the imaginary part of �̂xx becomes positive at
low momenta but is negative at higher momenta. Fig. 5 contains plots of AC conductivity
computations.

When we scaled out uH , the di↵usion coe�cient for low momenta became equal for all
directions. We find excellent agreement between the numerical and analytical value, as
depicted in Fig. 6.
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V. Balasubramanian, N. Jokela, A. Pönni, A. V. Ramallo, Information flows in a strongly interacting field theory, 
1811.09500

We characterized the RG flow of quantum information in a Chern-Simons 
theory coupled to massive fermions. We studied the flow of mutual information 
between strips and the corresponding information transitions.
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Figure 8: Strip configuration we consider in the definition of the c-function. We have
a strip of width l bordered by two thin strips of width �. We consider the mutual
information between the center strip (red) and the exterior (orange).

To this end, consider a QFT partitioned into three regions – A, characterized by
length scale l; C, bordering A characterized by a size � ⌧ l; and B, which is the
rest of the space. We now write our first candidate c-function (4.8) in terms of the
di↵erential operator Ll = (l2/Ly)@/@l as

F(l) = LlS(A) . (4.12)

Our second candidate c-function is

c(l) = lim
�!0

LlI(A,B) . (4.13)

The equality c = 2F then follows for pure states:

c(l) = lim
�!0

LlS(A) + lim
�!0

LlS(B)� lim
�!0

LlS(A [B) (4.14)

= LlS(A) + lim
�!0

LlS(B)
| {z }

=LlS(A)

� lim
�!0

LlS(C)
| {z }

=0

= 2F(l) . (4.15)

Here we used the fact that C is the complement of A [ B and so S(C) = S(A [ B)
for pure states. As � vanishes, so does the “bulk” contribution to S(C), so that S(C)
becomes equal to its UV-divergent piece. The latter is proportional to the length of
the boundary between A and B and does not depend on l. Thus LlS(C) vanishes in
the � ! 0 limit. Likewise, LlS(B) ! LlS(A) as � ! 0, since B is the complement of
A in this limit, and S(A) = S(Ā) for pure states. Note that, as discussed earlier, the
di↵erential operator Ll removes the divergences in the strip entanglement entropy so
that these arguments are well-defined. We stated this proof for strips, but a similar
argument holds for compact A.

4.3 Flow of extensivity

Consider three entangling regions A, B, and C and their tripartite information

I
3

(A,B,C) = I(A,B) + I(A,C)� I(A,B [ C) . (4.16)
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We construct a gravity dual to a system with multiple (2+1)-dimensional layers 
in a (3+1)-dimensional ambient theory. The solution is supersymmetric, has an 
intrinsic mass scale and exhibits anisotropy.

N. Jokela, J. M. Penín, A. V. Ramallo, D. Zoakos, Gravity dual of a multilayer system, 1901.02020

A. Amoretti, D. Areán, B. Goutéraux, D. Musso, Effective holographic theory of charge density waves, 
Phys. Rev. D 97 (2018) 086017

We write down an effective low-energy holographic theory of charge density 
waves. We capture the low energy dynamics of phonons coupled to conserved 
currents. The model allows to study quantum critical ground states breaking 
translations spontaneously.

A. Amoretti, D. Areán, B. Goutéraux, D. Musso, DC resistivity of quantum critical, charge density wave 
states from gauge-gravity duality, Phys. Rev. Lett. 120 (2018) 171603

In contrast to metals with weak disorder, the resistivity of weakly-pinned charge 
density waves is governed by incoherent, diffusive processes which do not drag 
momentum. We compute analytically the DC resistivity for a family of 
holographic charge density wave quantum critical phases and discuss its 
temperature scaling.



Study the emergence of Nambu-Goldstone modes due to broken 
translational symmetry. Purely spontaneous breaking yields a massless 
phonon which develops a mass upon introducing a perturbative explicit 
breaking as well as space-dependent order parameters.

D. Musso, Simplest phonons and pseudo-phonons in field theory, 1810.01799

A. Amoretti, D. Areán, B. Goutéraux, D. Musso, A holographic strange metal with slowly fluctuating 
translational order, 1812.08118

Study the interplay of slowly fluctuating translational order with 
quantum criticality in a strongly-coupled metallic phase.



holographic tools for
strongly coupled systems:
time dependent processes
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We investigate deconfinement and decoherence at strong coupling, i.e. under 
what initial conditions a pure excited state evolves into a final mixed state.

ThermalizationBlack hole formation

The dual process to decoherence involves the evolution (and eventual collapse) 
of a regular metric into a black hole. The Hawking temperature is TQFT.

Time dependent processes (heavy ions, relaxation problems, jet quenching) are 
mapped to dynamical gravitational problems demanding numerical simulation.
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We started investigating the case of time dependent couplings (quenches): take 
an initial state and drive a coupling periodically in time.

A. Biasi, P. Carracedo, J.Mas., D. Musso, A. Serantes
Floquet scalar dynamics in global AdS, JHEP 1804(2018)137

Scrutinize ranges of frequencies and amplitudes for which the system retains 
coherence (Floquet state) and find parametric resonances: the system absorbs 
energy until it collapses into a black hole.



-  at laser drivings of Hall states

A. Garbayo,  J. Mas, A. V. Ramallo
Floquet dynamics in D3-D5 flavored systems, work in progress

- gravitational wave driving of a strongly coupled system

A. Biasi,  J. Mas, A. Serantes
Gravitational wave driving at strong coupling, work in progress

In 2018 we started to explore other periodically driven systems:



A broader family of confined (completely resonant) systems whose mildly non-
linear wave dynamics was studied is given by:

1 Introduction

We shall be concerned with dynamical systems whose equations of motion are of the form

i↵̇
n

=
1X

m,k,l=0
n+m=k+l

C
nmkl

↵̄
m

↵
k

↵
l

=
1X

m=0

n+mX

k=0

C
nmk,n+m�k

↵̄
m

↵
k

↵
n+m�k

, (1)

with ↵
n

being complex dynamical variables (n ranges from 0 to 1), and dot denoting the
time derivative. C

nmkl

are real number that shall be referred to as the interaction coe�cients.
They are symmetric under permutations n $ m, k $ l and (n,m) $ (k, l). We shall assume
C0000 6= 0, which allows one to rescale the time variable and set

C0000 = 1, (2)

a convention we shall adopt from now on.
Such systems often arise [1–15] in weakly nonlinear analysis of PDEs with cubic nonlinear-

ity whose spectrum of frequencies of linearized perturbations is perfectly resonant (the di↵er-
ence of any two frequencies is integer in appropriate units). In fact, the resonance condition
n+m = k+l in the sum above precisely reflects the principal role of resonant combinations of
frequencies in weakly nonlinear regimes. Examples of such equations are the Gross-Pitaevskii
equation describing Bose-Einstein condensates in harmonic traps [4,6,8,9,12,13] and various
nonlinear problems in Anti-de Sitter spacetime [1–3,5, 7, 11, 14], in particular, those studied
in relation to its conjectured nonlinear instability [16,17]. In such situations, because of the
presence of resonances, amplitudes and phases of linearized modes aquire slow drifts due to
e↵ects of nonlinearities (no matter how small the nonlinearities are). The leading part of this
drift e↵ect is accurately described by the time-averaging method, which precisely produces
an equation of the form (1) for the slow evolution of the complex amplitudes of the linearized
modes. In this context, (1) is called the ‘resonant’ or the ‘e↵ective’ system. Here, we shall
directly focus on the dynamical properties of (1) without giving extensive details of how it
emerges in weakly nonlinear analysis of PDEs. Interested readers may consult [18, 19] for
the underlying theory.

The resonant system (1) is Hamiltonian with the Hamiltonian

H =
1X

n,m,k,l=0
n+m=k+l

C
nmkl

↵̄
n

↵̄
m

↵
k

↵
l

(3)

and the symplectic form i
P

n

d↵̄
n

^ d↵
n

. The symmetry conditions on C
nmkl

mentioned
under (1) are straightforwardly understood from this expression for the Hamiltonian, and
in particular they ensure that the Hamiltonian is real. Besides the Hamiltonian, the sys-
tem generically admits (for any values of the interaction coe�cients C) the following two
conserved quantities:

N =
1X

n=0

|↵
n

|2, (4)

J =
1X

n=0

n|↵
n

|2. (5)

1

A. Biasi, P. Bizon, O. Evnin, Solvable cubic resonant systems, 1805.03634

A. Biasi, B. Craps, O. Evnin, Energy returns in global AdS4, 1810.04753

A. Biasi, P. Bizon, B. Craps, O. Evnin, Two infinite families of resonant solutions for the Gross-Pitaevskii 
equation, Phys. Rev. E 98 (2018) 032222

The interaction coe�cients are again given in terms of the Laguerre polynomials:

S
nmkl

=
22L+1(L!)4

(2L)!n!m!k!l!

1Z

0

d⇢ e�2⇢⇢n+m�2LLn�L

L

(⇢)Lm�L

L

(⇢)Lk�L

L

(⇢)Ll�L

L

(⇢). (129)

Proving (57-58) requires a certain amount of manipulations with Laguerre polynomials,
which are given explicitly in the appendix.

5.7 General picture

An important feature extracted in section 2 from the study of three-dimensional invariant
manifolds of the form (6) is that their dynamics is fully determined by � and �. This allows
us to compactly summarize the previous literature in figure 1.

Figure 1: Currently known systems with three-dimensional invariant manifolds of the form (6)

arising from weakly nonlinear analysis of equations of mathematical physics, parametrised by (�, �).
The vertical dashed line represents the special value � = 1/2 for which the spectrum |↵

n

|2 does

not evolve. We have not explored the shaded region � < 1/2, since f
n

of (6) is assumed real in our

construction, and this assumption does not work in the shaded region.

We note that � has little impact on the dynamics within the invariant manifold (6), since
it be scaled out from the reduced equation (47) by redefining time. This means that for
solutions of the form (6), the spectrum |↵

n

|2 only depends on � through overall time scaling,
while the phases of ↵

n

may be �-sensitive. The value � = 1/2 is special, as in this case the
spectrum does not evolve in time at all, as is evident from (47). This case is represented by
the first excited Landau level of the two-dimensional Gross-Pitaevskii equation [13].

We also note that � does not appear in the conditions (57-58), and therefore for any
two resonant systems with the same value of �, one can take a linear combination of their
interaction coe�cients C

nmkl

satisfying (57-58) to obtain another system of the same type.
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Formation of singularities in finite time, characterization and classification of 
systems with regular solutions, instability, turbulence and chaos are studied.



higher-curvature corrections:
towards a consistent quantum gravity



J. D. Edelstein, K. Sfetsos, J. A. Sierra-García, A. Vilar López
T-duality equivalences beyond string theory, to appear

In the framework of a two-parameter family of quadratic theories exhibiting T-
duality, which includes (but goes beyond) String Theory

J. D. Edelstein, K. Sfetsos, J. A. Sierra-García, A. Vilar López
T-duality and high-derivative gravity theories: the BTZ black hole/string paradigm
JHEP 1806 (2018) 142
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parameter family of theories has been recently constructed by Marqués and Núñez [13]

based on the O(D,D) invariant Double Field Theory realization of T-duality,

L(1) = γ+ L(1)
+ + γ− L(1)

− , (1.6)

where γ± are assumed to be order M−2
⋆ parameters, and2

L(1)
+ =

1

2
RMNRS RMNRS − 3

4
HMNRHMSLRNR

SL +
1

6
∇M HNRS ∇MHNRS

+
1

48
HMNR HMS

LHNL
T HRT

S +
1

16
HMRT HMR

LHNS
T HNSL (1.7)

− 1

2
HMNR ∂M

(
HNAB Ω AB

R

)
,

L(1)
− = HMNRΘMNR . (1.8)

Notice that the sign subindex in L(1)
± makes reference to its parity properties under the

sign flip H → −H. ΘMNR is the gravitational Chern-Simons three-form,

ΘMNR = Ω[MA
B ∂N ΩR]B

A +
2

3
Ω[MA

B ΩNB
C ΩR]C

A , (1.9)

ΩMA
B being the Lorentz connection, and the antisymmetrization is normalized, for ex-

ample: T[MN ] =
1
2(TMN − TNM ). Some particular values of γ± correspond to low-energy

effective actions coming from string theories:

γ− = 0 bosonic ,

γ+ = −γ− heterotic , (1.10)

γ+ = γ− = 0 type II .

In the former two cases, γ+ − γ− = 1
2α

′. The case γ+ = γ− is also special [20]. We stress

on the fact that for generic γ+ and γ−, not included in the previous cases, the Lagrangian

above is not known to be related to a sigma model or a conformal field theory. Yet, it is

invariant under T-duality if we neglect quadratic terms in γ±. We will comment on the

particular form of the T-duality rules below. At this stage, it is sufficient to mention that

they also receive γ± corrections.

In this paper we would like to explore the behavior of the γ±-corrected Bañados-

Teitelboim-Zanelli (BTZ) black hole [21], which is a solution of the three-dimensional action

I =

∫
d3x

√
−G e−2Φ

[
L(0) + γ+ L(1)

+ + γ− L(1)
−

]
, (1.11)

when it is subjected to a T-duality transformation. Horowitz and Welch [22] studied this

problem when the dynamics is governed by (1.1) or, in other words, when γ± = 0. They

found that the BTZ black hole is mapped onto a black string. Despite the geometry being

severely modified, including its asymptotic behavior, the existence of a bifurcate Killing

2L(1)
+ was first presented in [19] modulo some field redefinitions, integration by parts and neglection of

boundary terms.

– 3 –

we showed that the temperature and entropy of a BTZ black hole are invariant 
under T-duality. Interestingly enough, the AdS/CFT correspondence enforces 
quantization conditions on these parameters.

For generic (albeit quantized) values of the parameters, it suggests that T-duality 
might be an interesting tool to constrain consistent low-energy effective 
actions while entailing physical equivalences outside String Theory.



G. Arciniega, P. Bueno, P. A. Cano, J. D. Edelstein, R. A. Hennigar, L. G. Jaime
Geometric inflation, 1812.11187

G. Arciniega, J. D. Edelstein, L. G. Jaime
Towards purely geometric inflation and late time acceleration, 1810.08166

While studying higher-curvature gravity actions we realized that there is a family 
with gorgeous properties: (i) just gravitons in vacuum, (ii) non-hairy black holes 
and, most importantly, (iii) well-behaved cosmology!



more to come…

A. Anabalón, D. Astefanesei, D. Choque, J. D. Edelstein, Phase transitions of neutral planar hairy AdS 
black holes, to appear

We investigate the phase diagram of a general class of 4d exact regular hairy 
planar black holes. For some particular values of the parameters these can be 
embedded in ω-deformed N=8 gauged supergravity.

We construct the hairy soliton that is the ground state of the theory and show that 
there exist first order phase transitions.


