Integrability in gauge and string theory

Riccardo Borsato

IGFAE Retreat, 10 January 2019
Plan

- Maximally supersymmetric gauge theory in 4D

- String theory on $AdS_5 \times S^5$

- Deformations preserving integrability
Gauge theory
\(\mathcal{N}=4 \) super Yang-Mills

gauge group \(SU(N) \), coupling constant \(g_{\text{YM}} \)
scalar+fermions+gauge bosons with \textbf{maximal susy in 4D}

\textbf{Conformal:} \quad \beta(g_{\text{YM}}) = 0

\textbf{Planar limit:}
\(g_{\text{YM}} \to 0, \; N \to \infty \)
while 't Hooft coupling
\(\lambda \equiv Ng_{\text{YM}}^2 \) is fixed

picture stolen from Alfonso’s review \[\text{arXiv:1310.4319} \]
The spin chain

$\mathfrak{su}(2)$ sector \supset scalar fields $\Phi, \bar{\Phi}$ of $\mathcal{N} = 4$ SYM

$$\mathcal{O}(x) = \text{Tr}[\Phi \Phi \bar{\Phi} \Phi \Phi \ldots \Phi \Phi \bar{\Phi} \Phi \Phi]$$

[Minahan, Zarembo 02]

Anomalous dimension at 1-loop: operators mix and the mixing matrix is the Hamiltonian of Heisenberg’s XXX spin chain!

Higher-loop corrections \Rightarrow long-range interactions

For similar methods applied to QCD see [arXiv:1012.4000]
Magnon excitations interact with \textbf{factorised S-matrix}

\[e^{ip_k L} \prod_{j \neq k} S(p_k, p_j) = 1 \]

S-matrix fixed at \textbf{all loops} from supersymmetry and analyticity

\textbf{Exact spectrum} in λ and L (size of the chain) from “Thermodynamic Bethe Ansatz” or “Quantum Spectral Curve”
String theory
\[\mathcal{N} = 4 \text{ SYM} \]

\[\text{AdS}_5 \times S^5 \]

\[-X_0^2 + \sum_{i=1}^{4} X_i^2 - X_5^2 = -1 \]

\[\sum_{i=1}^{6} Y_i^2 = 1 \]

\(\lambda \ll 1 \, \text{weakly-coupled gauge theory} / \lambda \gg 1 \, \text{classical string} \)
\[S = -\frac{\sqrt{\lambda}}{4\pi} \int d\tau d\sigma \gamma^{\alpha\beta} \partial_\alpha X^M \partial_\beta X^N G_{MN} + \text{fermions} \]

\[ds^2 = G_{MN} \, dX^M dX^N = ds_{\text{AdS}_5}^2 + ds_{S^5}^2 \]

Hamiltonian in light-cone gauge for 8 bosons + 8 fermions

\[H = H_2 + \frac{1}{\lambda} H_4 + \frac{1}{\lambda^2} H_6 + \ldots \]

Same S-matrix of spin-chain but expanded at \(\lambda \sim \infty \)

(Classical integrability)
Deformations
Integrability **beyond** spectrum of AdS_5/CFT_4

- Higher point-functions

- **Lower dimensional** dualities
 e.g. AdS_4/CFT_3, AdS_3/CFT_2

- **Deformations** of AdS_5/CFT_4
Break isometries of target space of string

Some deformations \sim twisted boundary conditions for the string

Deformations of the gauge theory?

On the gauge theory we can break e.g. supersymmetry, conformal invariance

In certain cases, deformations correspond to non-commutative gauge theories

Extension of the integrability methods to the deformed models?
Classical integrability: **Lax connection** $L_\alpha(z, \tau, \sigma)$, $\alpha = \tau, \sigma$

Flatness condition

$$\partial_\alpha L_\beta - \partial_\beta L_\alpha + [L_\alpha, L_\beta] = 0 \iff \text{EOM} \quad \frac{\delta S}{\delta X^M} = 0$$

Monodromy matrix:

$$T(z) = \text{Pexp} \int d\sigma L_\sigma(z)$$

Generating function of conserved quantities