qqHqq STXS binning

Claudia Bertella, on behalf of ATLAS Collaboration 17-January-2018

C. Bertella

Current STXS

- Stage-0: split by production mode (for $|y_H| < 2.5$)
 - replace the run1-like µ measurements

- Stage-1: Split modes into dominant & most characterising kinematic regions
 - Most regions accessible with the full Run2 dataset

Currently considering several changes to cope with experimental/theory constraints

C. Bertella

VBF Stage 1.1 beta

- Change BSM bin from P_T^{j1} to P_T^H
 - Match the ggH stage-1 and allow consistent merging
 - Further split at higher P_T^H possible
- Split 0,1-jet categories
 - Unlikely to be measurable, except maybe 1-jet bin
- Δy_{jj} could be ignored as a simple
 M_{jj} cut covers VBF phase-space
 - Allow theory uncertainty treatment based on M_{jj} spectrum

Disclaimer: all the feedback are mainly from analyses targeting the VBF production. Only a side note on VH-had

Feedback: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^*$

- Feedback provided also in a past meeting, <u>here</u>
- VBF cuts bin: shown that $|\Delta y_{jj}| > 2.8$ cut is not needed give the high correlation with M_{jj}
- The cut at 400 GeV was largely chosen from the very first $H \rightarrow \gamma \gamma$ selection
 - Better to split: 120, 350-400, and 700-800 GeV, corresponding to loose, normal, tight VBF
 - Alternative splitting defined by ~equal fractions of events in each mjj bin: 120, 420, and 850 GeV

H→ZZ*

H→γ

- Investigation of the truth-reco m_{jj} migration in view of the differential analysis
- Few configurations tested. [120,450] bin seems to have lower truth-reco m_{jj} migration wrt [120,350] and an higher purity: diagonal term ~70%
- STXS bins in m_{jj} will be adopted in the analysis. Therefore, it will be good to considered migration effect
 - In term of STXS results, high migrations will cause high correlations and extrapolation uncertainties

C. Bertella

Feedback: H→TT & H→WW*

Signal Region		Inclusive	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m lep} au_{ m had} \qquad au_{ m had} au_{ m had}$			
VBF	$\text{High-}p_{\text{T}}^{\tau\tau}$	$\begin{array}{c c} +9 \mathrm{pt} p_\mathrm{T}^{j_2} > 30 \mathrm{GeV} \\ \Delta \eta_{jj} > 3 \\ m_{jj} > 400 \mathrm{GeV} \\ \eta_{j_1} \cdot \eta_{j_2} < 0 \\ \mathrm{Central \ leptons} \end{array}$	_		$p_{\rm T}^{\tau\tau} > 140 {\rm GeV}$ $\Delta R_{\tau\tau} < 1.5$			
	Tight		$m_{jj} > 800{\rm GeV}$	$\begin{split} m_{jj} &> 500{\rm GeV} \\ p_{\rm T}^{\tau\tau} &> 100{\rm GeV} \end{split}$	Not VBF hig $m_{jj} > (1550 - 250 \cdot$	$(h-p_{\rm T}^{ au au}) GeV$		
	Loose		Not VBF tight		Not VBF high- $p_{\rm T}^{\tau\tau}$ and not VBF tight			
osted	$\text{High-}p_{\text{T}}^{\tau\tau}$	+1ptNot VBF $r^{\tau\tau} > 100 \text{ CeV}$	$\begin{array}{l} p_{\mathrm{T}}^{\tau\tau} > 140 \mathrm{GeV} \\ \Delta R_{\tau\tau} < 1.5 \end{array}$					
Boc	Low- $p_{\rm T}^{\tau\tau}$	$p_{\rm T} > 100 {\rm GeV}$	Not boosted high- $p_{\rm T}^{\tau\tau}$					
Process		Particle-level selection		σ [pb] σ		$\sigma^{\rm SM} [\rm pb]$		
$ggF \qquad N_{\rm jets} \ge 1,$		$p \ge 1, \ 60 < p_{\mathrm{T}}^H < 120$	1, $60 < p_{\rm T}^H < 120 {\rm GeV}, y_H < 2.5$		$1.79 \pm 0.53 (\text{stat.}) \pm 0.74 (\text{syst.})$			
ggF $N_{\text{jets}} \ge 1, p_{\text{T}}^H > 120 \text{GeV}, \mid$		$V, y_H < 2.5$	$0.12 \pm 0.05 (s$	$0.12 \pm 0.05 (\text{stat.}) \pm 0.05 (\text{syst.}) 0.14 \pm 0.05$				
VBI	VBF $ y_H < 2.5$			$0.25 \pm 0.08 (\text{stat.}) \pm 0.08 (\text{syst.})$ 0.22 ± 0.0		0.22 ± 0.01		

Majority of VBF sensitivity comes from bins with mjj: requirements tighter than the STXS VBF classification

Tight regime (~ m_{jj} > 500 GeV) has half the statistical uncertainties of the Loose regime

> Sensitivity below 500 GeV is hampered by increasing backgrounds

Potential room for improvement from further splitting at high m_{jj}

H→WW*

- Most sensitive BDT bin has m_{jj}≥500GeV. S/B higher above 700 GeV.
 Contributions at high m_{jj} ~ 1.5 TeV
- Second most sensitive BDT bin goes down to ~350 GeV but high background contamination
- In favour of 120, 350, 700, and 1500 GeV

C. Bertella

- Reminder: jets pair with the largest invariant mass are used for reco m_{jj} definition
- High jet pT selection up to 95 GeV for the inclusive selection and high pT^{bb}[pT^H] 80-160 GeV
- High m_{jj} regions are preferred due to event topology and selections (trigger and offline)
 - VBF inclusive 4-central channel have highest sensitivity ~700-800 GeV
 - VBF inclusive 2-central channel have highest sensitivity ~1.5 TeV
 - VBF photon channel also have high sensitivity in high m_{jj} region ~1.5 TeV
- For systematic treatment, it is important to have 2j/3j migration in all m_{jj} bins in order to properly handle the extrapolation from truth and reco m_{jj} definition
 C. Bertella

Photon treatment

Channel	photon			
Region	SR I	SR II	SR III	
VBF	6.2 ± 0.1	$5.5 {\pm} 0.1$	$2.3 {\pm} 0.1$	
ggF	0.5 ± 0.2	$0.3 {\pm} 0.1$	$0.8{\pm}0.3$	
VH	< 0.1	< 0.1	< 0.1	
$t\bar{t}H$	< 0.1	< 0.1	$0.4{\pm}0.1$	

From 5% to 30% ggF contribution wrt to the VBF inclusive with up to 60%

- Due to addition photon present in VBF+γ,
 STXS selection need to be update to have a proper photon selection
 - ▶ 47% of VBF in the 3j bin!

Can the VBF+γ bring useful information in the STXS?

- Is the VBF+γ kinematic similar to VBF?
- What about bins and systematic correlation?
- Technically is feasible to have a special jet definition

- $P_T j_1 v_S P_T H$ For the BSM bin we want to know at which scale BSM effects start to kick-off
- It would be nice synchronise of VBF BSM bin with ggH(mainly for merging purpose)
- Generation of the pp->Hqq (VBF+VHhad) process at LO with MG5 with SMEFTsim, either in the SM or with additional EFT operators included Courtesy of Saskia Falke and Ana Rosario Gomez (LAPP)

$P_T j^1 vs P_T^H$

- No big differences between the two variables
 - Sensitivities depending on the EFT operators
 - Optimal cut could be different for the two variables
- Why we don't move this cut after N_{jets} or even m_{jj} split?
- Points to consider:
 - Some analyses have high p_T^H selection
 - H→bb: p_T^H> 80-160 GeV
 - ▶ H→ττ, hh: p_T^H> 140 GeV, <u>see</u>
 - Most of the events will move in BSM bins
 - Possible splits in BSM bin to be considered
 - Allow to properly estimate the uncertainties in the reco SRs
 - C. Bertella

VH-hadronic

- VH(had) and VH(lep) require different measurements. VH(had) is close to VBF in terms of truth-level definition
- ▶ VBF/VH(had) separation looses sense at NLO, only $qqH \rightarrow qq$ defined
- However, we could add p_T^V bins to simplify the merging with VH(lep)

Summary

- All the analyses are happy to have a proper treatment of the REST categories
- More bins in Mjj will accommodate different decay modes
- p_T^{Hjj} bin in all the Mjj bins are encouraged to have a proper estimation of the systematic uncertainties
 - Merging procedure would be then decided based on the analysis sensitivity
- ▶ p_T^{j1} vs p_T^H: no strictly differences. Options:
 - Keep the current bin
 - \blacktriangleright Move to $p_T{}^H$ and add $p_T{}^{j1}$ in the Mjj bins
 - ▶ More p_T^H after N_{jets} or M_{jj} split
- ► VBF+ γ is a promising channel to access the VBF H→bb.
 - \blacktriangleright Simple analysis, with very low ggF contamination. Expected around 1-1.5 σ
 - An exception should be included in the STXS MC classification tool to allow a proper event categorisation
- \blacktriangleright VH-had bin could be split in $p_T{}^V$ following VH-lep category

C. Bertella

Backup

C. Bertella

Jungle in Mjj selection

	Mjj	pTjj cut
Н→үү	BDT Loose BDT Tight	2j & 3j
H→ZZ*	M _{jj} >120 GeV +MVA	2j & 3j
H→WW*	MVA	2j
Н→тт	Inclusive: 400 GeV hh: (1550-250*∆ŋ _{jj}) GeV II: 800 GeV Ih: 500	
H→bb	Incl.: MVA* VBF+γ: 800 GeV*	

* M_{jj} doesn't use the two leading jets, but the combination with high M_{jj}

C. Bertella

VBF Stage 1.X beta VBF $(\mathsf{EW} qqH \operatorname{incl} VH \rightarrow qqH)$

C. Bertella

17-January-2019

15

VBF Stage 1.X beta VBF $(\mathsf{EW} qqH \operatorname{incl} VH \rightarrow qqH)$

16