Introduction

Claudia Bertella (IHEP), Yacine Haddad (Northeastern), Predrag Milenovic (CERN), Frank Tackmann (DESY) Nicolas Berger (LAPP)

qq→Hqq Binning

- STXS "VBF" (more precisely, qq→Hqq):
 - VBF production
 - VH \rightarrow had (qq \rightarrow H(V \rightarrow qq))
- Current binning:
 - **BSM bin** : pTj1 > 200 GeV
 - VBF- topology region : mjj > 400 GeV, $|\Delta \eta_{ij}|$ > 2.8

 \rightarrow Bins with pTHjj < 25 GeV (2j-enriched) and > 25 GeV (2j-enriched)

- VH region : 60 < mjj < 120 GeV
- "Rest" : everything else

qq→Hqq : Issues & Improvements

• "Rest" strongly overlaps with ggF phase space, hard to constrain

- Probably unavoidable for some regions (very low m_j), but could find some measurable regions to isolate at medium m_i (also 1-jet) ?
- Complex cuts for "Rest" and VBF-topo regions, difficult for theory unc. computation
 ⇒ Remove |Δη| cut ?

- Improved m_{ij} binning:
 - Define a contiguous binning, not just (60,120) and (400, inf(.
 - Reoptimize bin boundaries
- High-p_T^{j1} region experimentally close to high-p_T^H region of ggF, but not quite the same ⇒ Large correlations
 ⇒ Switch to cuts that are either identical (⇒ p_T^H > 200 GeV for qq→Hqq), or sufficiently different to give small correlations ?

Outcome of previous discussions

Discussions at a dedicated meeting last November and the LHCHXSWG workshop last month (see Frank's presentation). Outcome so far:

- Removing |Δη| cut in VBF-topo definition
 - Cut mostly redundant in pT < 200 GeV phase space
 - ~1% loss in VBF purity due to slightly higher overlap with ggF

⇒ OK to remove

- Implement full m_{ii} binning : (0, 60), (60, 120), (120, xxx) GeV etc.
 - Possibly finer binning for theory uncertainty computation ("dashed" boundaries)
 - "Rest" separated into low m_{ii} regions + 0-jet and 1-jet bins
 - → Change 400 GeV boundary as regions just below should be measurable. Options:
 - A) Cut at 350 GeV, then 700 GeV and ~1.5 TeV
 - B) Cut at 250 GeV, then 500 GeV and ~1 TeV
 - \mathbf{p}_{T}^{j1} or \mathbf{p}_{T}^{H} :
 - Suggestions p_T^{j1} may have better sensitivity to BSM ? \Rightarrow studies shown today
 - Possible options (either or both ?) :

a) $p_T^H > 200$ GeV at the top of the selection chain (same as ggF)

b) $p_T^{j_1}$ or similar cut ($\Delta \phi_{ij}$?) within some m_{ij} bins

Agenda

- Short presentations provide new inputs
- Discussion main topics where progress would be welcome:
 - m_{jj} bin boundaries
 - Definition of the BSM bin (p_T^H / p_T^{j1})

Reference Material for the Discussion

VBF event fractions (from Yacine)

	0+1 jet	mjj < 350 GeV	mjj > 350 GeV
pTH < 200 GeV	44%	16%	34%
pTH > 200 GeV	1%	1%	4%

Current VBF binning (from Yacine)

12

New VBF binning (from Yacine)

New VBF binning (from Yacine)

