

Higher order corrections to Higgs boson pair production

RADCOR 2019, Avignon, France, September 9-13, 2019

Matthias Steinhauser | in collaboration with J. Davies, M. Gerlach, F. Herren, G. Mishima, D. Wellmann

TTP KARLSRUHE

gg ightarrow HH

NLO: approximations vs. exact NNLO: large *m_t*N³LO: *m_t* → ∞

Double Higgs production in SM

Double Higgs production in SM (2)

[Baglio,Djouadi,Gröber,Mühlleitner,Quevillon,Spira'12]

 λ_{HHH} from $\underline{g}\underline{g} \rightarrow HH$

Standard Model:

 $\begin{array}{ll} \mbox{gauge} & \alpha, \, \alpha_{\rm weak}, \, \alpha_{s} \\ \mbox{Yukawa} & y_{f} \sim m_{f} \\ \mbox{Higgs} & V = \frac{1}{2} m_{H}^{2} H^{2} + \lambda v H^{3} + \frac{\lambda}{4} H^{4} \\ & m_{H}^{2} = 2 \lambda v^{2} \Leftrightarrow \lambda = 0.13 \dots \\ & \mbox{not yet measured} \end{array}$

 λ from *H* pair production (?)

 λ_{HHH} from $gg \rightarrow HH$

[ATL-PHYS-PUB-2019-009]: $-3.2 < \lambda/\lambda_{
m SM} < 11.9$

gg ightarrow HH at NLO: known results

 $\begin{array}{l} \label{eq:loss} \text{LO} \; [\text{Glover, van der Bij'88; Plehn, Spira, Zerwas'96]} \\ \text{NLO} \; \text{for} \; m_t \to \infty \; [\text{Dawson, Dittmaier, Spira'98]} \\ \text{NLO} \; \text{incl.} \; 1/m_t \; \text{terms} \; [\text{Grigo, Hoff, Melnikov, Steinhauser'13; Degrassi, Giardine, Gröber'16]} \\ \text{NLO} \; \text{exact} \; (\text{real rad.}): \; [\text{Maltoni, Vryonidou, Zaro'14]} \\ \text{NLO} \; \text{Padé:} \; [\text{Gröber, Maier, Rauh'17]} \\ \text{NLO} \; \text{small-}p_{\mathcal{T}}: \; [\text{Bonciani, Degrassi, Giardino, Gröber'18]} \\ \text{NLO} \; \text{high energy:} \; [Davies, Mishima, Steinhauser, Wellmann'18'19; Mishima'18]} \\ \text{NLO} \; \text{exact} \; (\text{numerical}): \; [Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke'16]} \\ \end{array}$

[Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher'18]

LO: exact vs $s, t \gg m_t^2 > m_H^2$ expansion

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}(s)$

Non-planar Mis

total: 161 MIs $(s, t \gg m_t^2)$

Compute MIs

• differentiate MIs (
$$X = s, t, m_t^2$$
)

$$\frac{\mathrm{d}}{\mathrm{d}X}\vec{J} = M(s, t, m_t^2, \epsilon) \cdot \vec{J}$$

• expand in $m_t^2 \Rightarrow$ ansatz

see, e.g., [Melnikov, Tancredi, Wever'16]

$$J = \sum_{i} \sum_{j} \sum_{k} C_{ijk}(s, t) \epsilon^{i} (m_{t}^{2})^{j} \log (m_{t}^{2})^{k}$$

 $r > system of linear equations for <math>C_{ijk}(s, t)$

- solution requires BCs for $m_t \rightarrow 0$
- compute MIs such that $F_{
 m tri}$, $F_{
 m box1}$, $F_{
 m box2}$ are available up to $m_t^{
 m 32}$

[Davies, Mishima, Steinhauser, Wellmann'18'19; Mishima'18]

$$\mathcal{M} = \varepsilon_{1,\mu} \varepsilon_{2,\nu} \left(\mathcal{M}_1 A_1^{\mu\nu} + \mathcal{M}_2 A_2^{\mu\nu} \right) \qquad \mathcal{M}_1 \sim \frac{3m_\mu^2}{s - m_\mu^2} F_{\mathrm{tri}} + F_{\mathrm{box1}} \qquad \mathcal{M}_2 \sim F_{\mathrm{box2}}$$

NLO $\mathcal{V}_{\mathrm{fin}}$ for $p_{\mathcal{T}}=$ 250 GeV

[Davies, Heinrich, Jones, Kerner, Mishima, Steinhauser, Wellmann'19]

From NLO to NNLO

- exact: NO
- high-energy: box integrals with s, t and m_t
 ⇒ 3 scales: not yet at 3 loops (NNLO)
- large-m_t: tadpoles + massless triangles (+ 1-loop massless box)
 1-scale integrals: doable at 3 loops
- threshold: some non-analytic terms [Gröber,Maier,Rauh'17] $(s \approx 4m_t^2)$

NLO approximation for $gg \rightarrow hh$: large- m_t + threshold + Padé

[Gröber,Maier,Rauh'17]

NNLO approximation for $gg \rightarrow hh$: large- m_t + threshold + Padé

- large m_t
 - expansion up to order $1/m_t^4$ for cross section [Grigo,Hoff,Steinhauser15]
 - form factors $F_{\rm box1}$, $F_{\rm box2}$ up to order $1/m_t^8$ [Davies, Steinhauser'19]
 - $F_{\rm tri}$ up to order $1/m_t^{14}$
 - Expansion: ≈ 10 days wall time (a few × ≥ 96 GB RAM, 12 cores; stored expression 324 GB)
 - Projection/integration: ≈ 1 month wall time (tasks are simpler: ≥ 8 GB RAM, 4 cores; total time ≈ 1,600 days)
 - heavy use of modern (T)FORM commands: [Ruijl,Ueda,Vermaseren'17] e.g. ArgToExtraSymbols
- theshold input from [Gröber, Maier, Rauh'17]
- $rac{l}{r}$ promising to obtain stable Padé results F_{tri} : [Davies,Gröber,Maier,Rauh,Steinhauser'19] F_{box2} :[Davies,Gröber,Maier,Rauh,Steinhauser,WIP]

Matthias Steinhauser — Higgs boson pair production — RADCOR 2019

NNLO real corrections for large m_t

• $m_t \to \infty$: use NNLO $gg \to H$ + C_{HH} [de Florian,Mazzitelli'14; Grigo,Melnikov,Steinhauser'14]

• Motivation for $1/m_t^2$ terms: input for Padé approximation (or similar)

known numerically: gg ightarrow HH + gg and $gg ightarrow HH + qar{q}$

[Grazzini,Heinrich,Jones,Kallweit,Kerner,Lindert,Mazzitelli'18]

NNLO real corrections for large *m_t*

22000 2200 ຂັດດວດດຸ 0000000 $\text{2-loop 2} \rightarrow \text{3}$ 1-loop $2 \rightarrow 4$ 0000 use optical theorem Leegieeeeeeeeeeee asymptotic expansion for $m_t^2 \gg m_H^2$, s tadpoles "phase-space" integrals 1 and 2 loops eeeeee morroom m_{H}^2, s m² 3-loop 3- and 4-particle cuts [DHMS WIP] [DHMS = Davies, Herren, Mishima, Steinhauser] and 2-loop 3-particle cut [DHMS'19] Matthias Steinhauser — Higgs boson pair production — RADCOR 2019

	amplitude	\rightarrow	map to integral family	\rightarrow	IBP reduction FIRE [Smirnov]	\rightarrow	minimal set of MIs
\rightarrow	diff. eqs. in $x = m_H^2/s$	\rightarrow	Fuchsian form epsilon [Prausa'17]	\rightarrow	ϵ form LIBRA [Lee] [Henn'13]	\rightarrow	solution Goncharov polylogs ginac [Vollinga,Weinzierl'05]

	amplitude	\rightarrow	map to integral family	\rightarrow	IBP reduction FIRE [Smirnov]	\rightarrow	minimal set of MIs
\rightarrow	diff. eqs. in $x = m_H^2/s$	\rightarrow	Fuchsian form epsilon [Prausa'17]	\rightarrow	ϵ form LIBRA [Lee] [Henn'13]	\rightarrow	solution Goncharov polylogs ginac [Vollinga,Weinzierl'05]

 $\begin{aligned} \partial_x \vec{l} &= \sum_i \frac{M^{(i)}(\epsilon)}{x - x_i} \vec{l} \\ x_i &= 0, 1, 1/4, -1, -1/4, e^{\pm i\pi/3}, -1/3 \end{aligned}$

apply variable transformations, e.g., $x = \frac{y}{(1+y)^2}$

	amplitude	\rightarrow	map to integral family	\rightarrow	IBP reduction FIRE [Smirnov]	\rightarrow	minimal set of MIs
\rightarrow	diff. eqs. in $x = m_H^2/s$	\rightarrow	Fuchsian form epsilon [Prausa'17]	\rightarrow	ϵ form LIBRA [Lee] [Henn'13]	\rightarrow	solution Goncharov polylogs ginac [Vollinga,Weinzier!'05]

$$\begin{aligned} \partial_x \vec{I} &= \sum_i \frac{M^{(i)}(\epsilon)}{x - x_i} \vec{I} \\ x_i &= 0, 1, 1/4, -1, -1/4, e^{\pm i\pi/3}, -1/3 \\ \partial_y \vec{J} &= \epsilon \sum_i \frac{\tilde{M}^{(i)}}{y - y_i} \vec{J} \end{aligned}$$

Cross section for n_h^3 diagrams

- expansion up to $1/m_t^8$
- Combine with virtual corrections [Grigo,Hoff,Steinhauser'15; Davies,Steinhauser'19]

Cross section for n_h^3 diagrams

- expansion up to $1/m_t^8$
- Combine with virtual corrections [Grigo,Hoff,Steinhauser'15; Davies,Steinhauser'19]

 C_{HH} to 4 loops

[Grigo,Melnikov,Steinhauser'14]

Renormalization and matching

• Tricky renormalization: $\langle \mathcal{O}_1 \mathcal{O}_1 \rangle^{\text{ren}} = (Z_{\mathcal{O}_1})^2 \langle \mathcal{O}_1 \mathcal{O}_1 \rangle^{\text{bare}} + Z_{11}^L \langle \mathcal{O}_1 \rangle^{\text{bare}} \qquad Z_{11}^L = 1 + \mathcal{O}(\alpha_s^2)$ [Zoller16]

 $(C_{HH}Z_{\mathcal{O}_{1}} + C_{H}^{2}Z_{11}^{L})\mathcal{A}_{\text{LO},1\text{PI}}^{\text{eff}} + C_{H}^{2}Z_{\mathcal{O}_{1}}^{2}\mathcal{A}_{\text{LO},1\text{PR},\lambda=0}^{\text{eff}} = \mathcal{A}_{1\text{PI}}^{h} + \mathcal{A}_{1\text{PR},\lambda=0}^{h}$ (Gerlach, Herren, Steinhauser 18)

 Δ_{HH}

[Gerlach, Herren, Steinhauser'18]

$$\begin{split} \Delta_{HH}^{(4)} &= \frac{1993}{576} C_A^3 - \frac{1289}{144} C_A^2 C_F - \frac{3191}{864} C_A^2 T_F + \frac{165}{32} C_A C_F^2 + \frac{67}{18} C_A C_F T_F + \frac{5}{72} C_A T_F^2 \\ &- \frac{3}{2} C_F^2 T_F + \frac{1}{9} C_F T_F^2 + \left[\frac{77}{48} C_A^3 - \frac{121}{48} C_A^2 C_F - \frac{7}{12} C_A^2 T_F + \frac{11}{12} C_A C_F T_F \right] \ln \left(\frac{\mu^2}{M_t^2} \right) \\ &+ n_l T_F \left[-\frac{55}{144} C_A^2 + \frac{55}{18} C_A C_F + \frac{109}{216} C_A T_F - \frac{11}{4} C_F^2 + \frac{19}{36} C_F T_F \right] \\ &+ n_l^2 T_F^2 \left[\frac{5}{72} C_A + \frac{1}{9} C_F \right] + n_l T_F \left[-\frac{7}{12} C_A^2 + \frac{11}{4} C_A C_F - \frac{2}{3} C_F T_F \right] \ln \left(\frac{\mu^2}{M_t^2} \right) \\ &- \frac{2}{3} n_l^2 C_F T_F^2 \ln \left(\frac{\mu^2}{M_t^2} \right) \end{split}$$

 $\begin{array}{ll} \text{[Spira'16] Low-energy theorem:} & [C_{\mathcal{H}} = -\frac{m_l}{\zeta_{\alpha_s}}\frac{\partial}{\partial m_l}\zeta_{\alpha_s} \text{ [Chetyrkin,Kniehl,Steinhauser'98]]} \\ C_{\mathcal{H}\mathcal{H}} = \frac{m_l^2}{\zeta_{\alpha_s}}\frac{\partial^2}{\partial m_l^2}\zeta_{\alpha_s} - 2\left(\frac{m_l}{\zeta_{\alpha_s}}\frac{\partial}{\partial m_l}\zeta_{\alpha_s}\right)^2 & \alpha_s^{(5)} = \zeta_{\alpha_s}\alpha_s^{(6)} \end{array}$

Conclusions

LO, NLO: exact NLO: many approximations

exact result is expensive!
 combine approximations and exact result
 test bed for NNLO

■ NNLO: large- m_t (virt. + real) ■ N³LO: effective-theory ($m_t \rightarrow \infty$)

- C_{HH} to 4 loops
- cross section in reach