Non-factorizable QCD Effects in Higgs Boson Production via Vector Boson Fusion

Alexander Penin

University of Alberta

RADCOR 2019

Avignon, France, September 9th, 2019

How to Compute Two-Loop Five-Point Massive Amplitudes by Hand

Alexander Penin

University of Alberta

RADCOR 2019

Avignon, France, September 9th, 2019

Topics discussed

Introduction

Status of QCD corrections to VBF Higgs production

Nonfactorizable NNLO QCD Corrections

- **•** Transverse momentum expansion
- Decoupling of light-cone and transversal dynamics
- Two-loop result
- Glauber phase noncancellation
- Numerical estimates

Topics discussed

Introduction

Status of QCD corrections to VBF Higgs production

Nonfactorizable NNLO QCD Corrections

- Transverse momentum expansion
- Decoupling of light-cone and transversal dynamics
- Two-loop result
- Glauber phase noncancellation
- Numerical estimates

Based on:

T. Liu, K. Melnikov, A.A. Penin e-Print arXiv:1906.10899 [hep-ph] Phys.Rev.Lett. (2019)

Higgs production at the LHC

Gluon fusion

- probes Higgs coupling to quarks
- Joint and production channel
- NNNLO QCD correction

(no high- p_{\perp} and b-quark contributions)

Higgs production at the LHC

Gluon fusion

- probes Higgs coupling to quarks
- Joint Antipart State of Contract State of Con
- NNNLO QCD correction

(no high- p_{\perp} and b-quark contributions)

Vector boson fusion

- probes Higgs coupling to electroweak bosons
- separated by forward quark jets tagging
- NLO+

(NNLO QCD nonfactorizable corrections are missing)

QCD corrections to VBF Higgs production

Factorizable

- DIS-like process
- "structure function approach"

T. Han, G. Valencia and S. Willenbrock, Phys. Rev. Lett. 69, 3274 (1992)

known to NNNLO

QCD corrections to VBF Higgs production

Factorizable

- DIS-like process
- "structure function approach"

T. Han, G. Valencia and S. Willenbrock, Phys. Rev. Lett. 69, 3274 (1992)

known to NNNLO

Nonfactorizable (neglect *t*-*u* interference)

- starts at NNLO
- $1/N_c^2$ color suppression
- real radiation numerically suppressed

Status of perturbative QCD analysis

NLO differential

T. Figy, C. Oleari and D. Zeppenfeld, Phys. Rev. D **68**, 073005 (2003)

- NNLO total (factorizable) P. Bolzoni, F. Maltoni, S. O. Moch and M. Zaro, Phys. Rev. Lett. **105**, 011801 (2010)
- NNLO differential (factorizable)

M. Cacciari, F. A. Dreyer, A. Karlberg, G. P. Salam, G. Zanderighi, Phys. Rev. Lett. **115**, 082002 (2015);

J. Cruz-Martinez, T. Gehrmann, E. W. N. Glover and A. Huss, Phys. Lett. B **781**, 672 (2018)

NNNLO differential (factorizable)
 F. A. Dreyer and A. Karlberg,
 Phys. Rev. Lett. 117, 072001 (2016)

Bottleneck: two-loop virtual corrections

- Bottleneck: two-loop virtual corrections
- *two options:*
 - brute-force calculation
 five-point two-loop function with two masses M_V, M_H
 - asymptotic expansion
 study the process kinematics in find a small parameter
 expand in get an effective theory description

Bottleneck: two-loop virtual corrections

two options:

- *brute-force calculation five-point two-loop function with two masses* M_V, M_H
 asymptotic expansion
 - study the process kinematics I find a small parameter study the process kinematics I find a small parameter

Bottleneck: two-loop virtual corrections

two options:

- brute-force calculation five-point two-loop function with two masses M_V, M_H
 asymptotic expansion study the process kinematics is find a small parameter
 - Sexpand Section ⇒ get an effective theory description

VBF kinematical features

- energetic forward quark jets
- rapidity gap between Higgs and tagging jets
- Regge limit

Expansion: Born amplitude

$$q(p_1^+) + q'(p_2^-) \to q(p_3) + q'(p_4) + H(p_H)$$

vector boson momenta $q_3 = p_3$

$$p_3 - p_1, \qquad q_4 = p_4 - p_2$$

Expansion: Born amplitude

$$q(p_1^+) + q'(p_2^-) \to q(p_3) + q'(p_4) + H(p_H)$$

vector boson momenta

$$q_3 = p_3 - p_1, \qquad q_4 = p_4 - p_2$$

Scale hierarchy:

$$(p_{\perp}^2, M_{V,H}^2)/s \sim 0.03$$

 $e^{|y_H| - |y_j|} \sim 0.05$

Expansion: Born amplitude

$$q(p_1^+) + q'(p_2^-) \to q(p_3) + q'(p_4) + H(p_H)$$

vector boson momenta

$$q_3 = p_3 - p_1, \qquad q_4 = p_4 - p_2$$

Scale hierarchy:

$$(p_{\perp}^2, M_{V,H}^2)/s \sim 0.03$$

 $e^{|y_H| - |y_j|} \sim 0.05$

Leading power approximation:

- Glauber vector bosons $q_i^2 pprox {q_i}_{\perp}^2$
- light-cone gauge currents $j^{\mu} \approx j^{\pm}$

Expansion: one-loop amplitude

- no NLO (color conservation)
- one-loop × one-loop at NNLO
- gluons in color singlet state

effective abelian coupling

$$\tilde{\alpha}_s = \left(\frac{N_c^2 - 1}{4N_c^2}\right)^{1/2} \alpha_s$$

Expansion: one-loop amplitude

- no NLO (color conservation)
- one-loop × one-loop at NNLO
- gluons in color singlet state

effective abelian coupling

$$\tilde{\alpha}_s = \left(\frac{N_c^2 - 1}{4N_c^2}\right)^{1/2} \alpha_s$$

Abelian gauge theory in Regge limit
 Landau school (V. Sudakov, V. Gribov, L. Lipatov, V. Gorshkov, G. Frolov)
 H. Cheng and T. T. Wu, Phys. Rev. 186, 1611 (1969)
 S. J. Chang and S. K. Ma, Phys. Rev. 188, 2385 (1969)

Leading power approximation in Regge limit

- ▶ Hard loop momentum k ~ √s
 ▶ subleading power $\mathcal{O}(p_{\perp}^4/s^2)$
- ▶ Leading power $k \ll \sqrt{s}$ ▶ eikonal fermion propagatrors

$$\frac{1}{p\!\!\!/_{1,2} + k\!\!\!/ + i\epsilon} \to \frac{\gamma^\pm}{2k^\pm + i\epsilon}$$

Sum over permutations

$$\frac{1}{2k^{\pm}+i\epsilon} - c.c. = -i\pi\delta(k^{\pm})$$

Leading power approximation in Regge limit

- ▶ Hard loop momentum k ~ √s
 ▶ subleading power $\mathcal{O}(p_{\perp}^4/s^2)$
- Leading power $k \ll \sqrt{s}$ • eikonal fermion propagatrors

$$\tfrac{1}{p\!\!\!/_{1,2} + k\!\!\!/ + i\epsilon} \to \tfrac{\gamma^\pm}{2k^\pm + i\epsilon}$$

- Sum over permutations $\frac{1}{2k^{\pm}+i\epsilon} c.c. = -i\pi\delta(k^{\pm})$
- Decoupling of light-cone and transversal dynamics
 - on-shell fermions on the light-cone
 - Glauber gauge bosons in the transversal space

Transversal space 2d effective theory

One-loop leading-power amplitude (purely imaginary)

$$\mathcal{M}^{(1)} = i\tilde{\alpha}_s \chi^{(1)} \mathcal{M}^{(0)}$$

$$\chi^{(1)} = \frac{1}{\pi} \int \frac{\mathrm{d}^2 \mathbf{k}}{\mathbf{k}^2 + \lambda^2} \times \frac{\mathbf{q}_3^2 + M_V^2}{(\mathbf{k} - \mathbf{q}_3)^2 + M_V^2} \frac{\mathbf{q}_4^2 + M_V^2}{(\mathbf{k} + \mathbf{q}_4)^2 + M_V^2} \,,$$

• Infrared divergence: $\chi^{(1)} = -\ln\left(\frac{\lambda^2}{M_V^2}\right) + f^{(1)}(\boldsymbol{q}_3, \boldsymbol{q}_4, M_V^2)$

Glauber phase:

$$e^{-i\tilde{lpha}_s\ln\lambda^2}$$

Two-loop amplitude

Two-loop leading-power amplitude

$$\left[\mathcal{M}^{(2)} = -\frac{\tilde{\alpha}_s^2}{2!}\chi^{(2)}\mathcal{M}^{(0)}\right]$$

Infrared divergence structure

$$\chi^{(2)} = \ln^2 \left(\frac{\lambda^2}{M_V^2}\right) - 2\ln\left(\frac{\lambda^2}{M_V^2}\right) f^{(1)}(\boldsymbol{q}_3, \boldsymbol{q}_4, M_V^2) + f^{(2)}(\boldsymbol{q}_3, \boldsymbol{q}_4, M_V^2)$$

• $f^{(i)}$ are finite one-dimensional integrals

NNLO cross section

Nonfactorizable correction

$$\mathrm{d}\sigma_{\mathrm{nf}}^{\mathrm{NNLO}} = \left(\frac{N_c^2 - 1}{4N_c^2}\right) \alpha_s^2 \,\chi_{\mathrm{nf}} \,\mathrm{d}\sigma^{\mathrm{LO}}$$

$$\chi_{\rm nf} = \left[\chi^{(1)}\right]^2 - \chi^{(2)} = \left[f^{(1)}\right]^2 - f^{(2)}$$

Uncancelled part of Glauber phase enhanced by π^2

→ nonfactorizable NNLO/factorizable NNLO ~ $\frac{\pi^2}{N_c^2}$

Explicit result

$$f^{(1)} = \int_{0}^{1} dx \frac{\Delta_{3} \Delta_{4}}{r_{12}^{2}} \left[\ln \left(\frac{r_{12}^{2}}{r_{2} M_{V}^{2}} \right) + \frac{r_{1} - r_{2}}{r_{2}} \right],$$

$$f^{(2)} = \int_{0}^{1} dx \frac{\Delta_{3} \Delta_{4}}{r_{12}^{2}} \left[\left(\ln \left(\frac{r_{12}^{2}}{r_{2} M_{V}^{2}} \right) + \frac{r_{1} - r_{2}}{r_{2}} \right)^{2} - \ln^{2} \left(\frac{r_{12}}{r_{2}} \right) - \frac{2r_{12}}{r_{2}} \ln \left(\frac{r_{12}}{r_{2}} \right) - 2 \operatorname{Li}_{2} \left(\frac{r_{1}}{r_{12}} \right) - \left(\frac{r_{1} - r_{2}}{r_{2}} \right)^{2} + \frac{\pi^{2}}{3} \right]$$

$$\begin{aligned} r_1 &= q_3^2 x + q_4^2 (1 - x) - q_H^2 x (1 - x) ,\\ r_2 &= q_H^2 x (1 - x) + M_V^2 ,\\ r_{12} &= r_1 + r_2 ,\\ \Delta_i &= q_i^2 + M_V^2 \\ q_H &= q_3 + q_4 \end{aligned}$$

Limits

Forward production

$$\lim_{q_{3,4}\to 0} \chi_{\rm nf} = 1 - \frac{\pi^2}{3}$$

 \rightarrow -1% correction to the cross section

- Forward Higgs production $(x = M_V^2/q_3^2)$ $\lim_{q_H \to 0} \chi_{nf} = \ln^2 \left(\frac{1+x}{x}\right) + 2\operatorname{Li}_2 \left(\frac{1}{1+x}\right) - \frac{\pi^2}{3} + 2\frac{1+x}{x}\ln\left(\frac{1+x}{x}\right) + \left(\frac{1-x}{x}\right)^2$
- \rightarrow large positive correction for small x
- Forward jet production

$$\lim_{q_3 \to 0} \chi_{\rm nf} = \ln^2 \left(\frac{1+x}{x} \right) + 2 \operatorname{Li}_2 \left(\frac{1}{1+x} \right) - \frac{\pi^2}{3} \,.$$

Numerics: Jets

transverse momentum distribution (2nd jet) rapidity distribution (1st jet)

Numerics: Higgs

transverse momentum distribution

rapidity distribution

Factorizable vs nonfactorizable corrections

Summary

Summary

- Nonfactorizable NNLO QCD corrections to VBF Higgs production
 - Glauber phase enhancement vs color suppression: $\pi^2/N_c^2 \sim 1$
 - *• a percent scale, transverse momentum dependence*
 - *comparable to factorizable counterpart*

Summary

- Nonfactorizable NNLO QCD corrections to VBF Higgs production
 - Glauber phase enhancement vs color suppression: $\pi^2/N_c^2 \sim 1$
 - *a percent scale, transverse momentum dependence*
 - *comparable to factorizable counterpart*

In coming era of elliptic polylogs and numerical unitarity, physically motivated expansions still fly high, solve challenging problems and uncover nontrivial dynamics.