Matteo Becchetti

Universitè Catholique de Louvain La Neuve, CP3

Based on JHEP 1908 (2019) 071, in collaboration with R. Bonciani, V. Casconi, A. Ferroglia, S. Lavacca and A. von Manteuffel

Outline

Introduction

- Differential equation method
- Canonical basis approach
- Master Integrals computation
- Conclusions and outlooks

Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Top-Antitop production

- Top-Antitop production is one of the major QCD backgrounds at the LHC.
- The top quark is the heaviest particle in the SM. It has a very short lifetime, about $10^{-25}s$, which implies that it does not hadronize \Rightarrow it is possible to study top quark properties as a single quark.
- Top-Antitop production total and differential cross sections are known numerically to NNLO in QCD. [Barnreuter, Czakon, Fiedler, Heymes, Mitov (2012-2016)]

An analytic calculation of top-antitop production QCD two-loop corrections is still important:

- It provides an independent check of the numerical results.
- It could be a faster and cheaper (in terms of CPU usage) way to compute two-loop QCD corrections to the process.

Top-Antitop production

Production channels:

- $q\bar{q} \rightarrow t\bar{t}$: quarks-annihilation channel \rightarrow subdominant at LHC energies.
- **g** $gg \rightarrow t\bar{t}$: gluon-fusion channel \rightarrow dominant at LHC enegies.

 Interference of the two-loop amplitude in the quark-annihilation channel with the tree-level amplitude:

$$\begin{aligned} A_{2L}^{q\bar{q}} &= (N^2 - 1) \left[N^2 A^{q\bar{q}} + B^{q\bar{q}} + \frac{C^{q\bar{q}}}{N^2} + N N_l D_l^{q\bar{q}} + \frac{N_l}{N} E_l^{q\bar{q}} + N N_h D_h^{q\bar{q}} \right. \\ &+ \frac{N_h}{N} E_h^{q\bar{q}} + N_l^2 F_l^{q\bar{q}} + N_l N_h F_{lh}^{q\bar{q}} + N_h^2 F_h^{q\bar{q}} \right] \end{aligned}$$

N color number, N_l number of light-fermion, N_h number of heavy-fermion.

$q\bar{q}$ channel status

- All the 10 color coefficients are known numerically at NNLO. [Czakon '08]
- The two-loops infrared poles are known analytically. [Ferroglia, Neubert, Pecjak, L.L. Yang '09]
- The color coefficients A^{qq̄}, D_l^{qq̄}, E_l^{qq̄}, D_h^{qq̄}, E_h^{qq̄}, F_l^{qq̄}, F_{lh}^{qq̄}, F_h^{qq̄}, F_h^{qq}, F_h^{qq}, F_h^{qq}, F_h^{qq}, F_h^{qq}, F_h^{qq}, F_h^{qq}, F_h^{qq}, F_h^{qq}, F_h^{qq}
- For the color coefficients B^{qq̄} and C^{qq̄} an analytic expression is not yet available ⇒ Analytic solution to certain Feynman integrals families is still missing, while others have already been computed [Di Vita, Laporta, Mastrolia, Primo, Schubert '18] [von Manteuffel, Studerus '13].

Two-Loop QCD corrections

• Example of Feynman Diagrams needed for the colour coefficients $B^{q\bar{q}}$ and $C^{q\bar{q}}$:

Thin lines massless quarks, thick lines top quarks, curly lines gluons.

Topologies:

- MIs of topology B have been recently computed [Di Vita, Laporta, Mastrolia, Primo, Schubert '18]
- MIs of topology A are new. They have been computed by [MB, Bonciani, Casconi, Ferroglia, Lavacca, von Manteuffel '19] and by [Di Vita, Gehrmann, Laporta, Mastrolia, Primo, Schubert '19].

Scattering Amplitudes

Feynman Diagrams + Feynman Rules \Rightarrow Scattering amplitudes can be written formally as $\mathcal{A} = c \times I$

- c is obtained by the contraction of all the tensor and color structures compatible with the process.
- *I* are scalar integrals associated to the loop structure of the amplitude.

Tipically large number of integrals to be solved \Rightarrow We need an efficient computation method

Identities by-parts relations (IBPs)

A generic scalar integrals I can be written as:

$$I(a_1, \cdots, a_n) = \int \prod_{j=1}^l \mathcal{D}^d k_j \prod_{m=1}^n \frac{1}{\mathcal{D}_m^{a_m}}$$

D_m are linearly independent functions of scalar products of the kind p_i · p_j , p_i · k_j and k_i · k_j , where p_i are external momenta, and a₁, · · · , a_n are integer numbers.
 IBPs [Chetyrkin, Tkachov '81]:

$$\int \prod_{j=1}^{l} \mathcal{D}^{d} k_{j} \frac{\partial}{\partial k_{i}^{\mu}} \left(v_{\mu} \prod_{m=1}^{n} \frac{1}{D_{m}^{a_{m}}} \right) = 0$$

relations among scalar integrals.

$IBPs \Rightarrow AII$ the scalar integrals involved in an higher-order computation can be written as a finite linear combination of Master Integrals.

We need to compute a lower number of integrals!

Differential equation method

Differential Equation Method

The MIs $\vec{f}(\vec{x}, \epsilon)$ satisfy a system of linear first order coupled PDE with respect to the kinematical invariants \vec{x}

$$d\vec{f}(\vec{x},\epsilon) = dA(\vec{x},\epsilon)\vec{f}(\vec{x},\epsilon)$$

Remiddi '97

- d is the total differential with respect to the kinematical invariants.
- $dA(\vec{x}, \epsilon)$ is the one-form matrix associated to the PDE system.

Canonical Basis

In some cases exists a particular integrals basis, the Canonical Basis [Henn '13], in which the system of PDEs takes the form

$$d\tilde{f}(\vec{x},\epsilon) = \epsilon d\tilde{A}(\vec{x})\tilde{f}(\vec{x},\epsilon)$$

with $d\tilde{A}(\vec{x})$ logarithmic differential one-form

$$\tilde{A} = \sum_{k} A^{(k)} \log I_k(\vec{x})$$

 A_k rational numbers matrices, $I_k(\vec{x})$ algebraic functions of kinematical invariants.

Canonical Basis approach

Canonical Basis Approach

The solution of system of differential in canonical basis is given in terms of Chen Iterated Integrals [Chen '77]:

$$ec{f}(ec{x},\epsilon) = \mathbb{P}\left(\epsilon\int_{\gamma}d ilde{A}(ec{x})
ight)ec{f}(ec{x_0},\epsilon)$$

 γ is an integration path in kinematic invariants space, $\vec{f}(\vec{x}_0,\epsilon)$ is the boundary conditions vector.

Solution suitable for ε-expansion:

$$\vec{f}(x) = \vec{t}^{(0)}(\vec{x}_0) + \sum_{k=1}^{\infty} \epsilon^k \sum_{j=1}^k \int_0^1 dt_1 \frac{\partial \tilde{A}(t_1)}{\partial t_1} \int_0^{t_1} dt_2 \frac{\partial \tilde{A}(t_2)}{\partial t_2} \cdots \int_0^{t_j-1} dt_j \frac{\partial \tilde{A}(t_j)}{\partial t_j} \vec{t}^{(k-j)}(\vec{x}_0) \cdot \vec{t}^{(k-j)}($$

- Solution is given order-by-order in ε in terms of Goncharov Multiple Polylogarithms (GPLs) [Goncharov '95, Remiddi, Vermaseren '05].
- Algorithmic integration procedure ⇒ Efficient method to compute MIs.
- Numerical routines for GPLs such as GiNaC [Vollinga, Weinzierl '05] ⇒ Phenomenology application.

The explicit integration order-by-order in ϵ of the Chen Iterated integral solution is closely related to the class of functions to which belong $I_k(x)$.

- Rational functions: the solution is directly expressible in terms of GPLs.
- Algebraic functions: the solution is not directly expressible in terms of GPLs ⇒ we have to linearize all the roots that appear in the PDE system.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Polylogarithms Representation

If the Alphabet of the differential equation system $I_k(\vec{x})$ has a rational dependence on the kinematical invariants, then the matrix $d\tilde{A}(\vec{x})$ has the form

$$d\tilde{A}(\vec{x}) \simeq \sum_{i} \sum_{k} \frac{A_{i,k} dx_{i}}{x_{i} - l_{i,k}}$$

 $A_{i,k}$ are real numbers and $I_{i,k}$ are algebraic functions of all the kinematical invariants except for x_i .

This implies that the master integrals can be expressed in terms of Goncharov multiple polylogarithms (GPLs):

$$G(\vec{\alpha};z) = G(\alpha_1,\cdots,\alpha_n;z) = \int_0^z \frac{dt}{t-\alpha_1} G(\alpha_2,\cdots,\alpha_n;t),$$

$$G(\alpha_1; z) = \int_0^z \frac{dt}{t - \alpha_1} \quad \alpha_1 \neq 0, \qquad G(\vec{0}_n; z) = \frac{\log^n z}{n!}$$

 $\vec{\alpha} = \{\alpha_1, \cdots, \alpha_n\}$ with $c_i \in \mathbb{C}$ is called weight vector, the dimension of $\vec{\alpha}$ is the weight of the GPL.

▲□▶▲□▶▲□▶▲□▶ = のへの

Semi-algorithmic Approach

It is possible to find the Canonical Basis for the system of differential equations by following the semi-algorithmic approach described in [Gehrmann, von Manteuffel, Tancredi, Weihs '14]:

Step 1: we choose the powers a_i of the scalar products in order to get a differential equation:

$$df_i(x) = (H_{0,ij}(x) + \epsilon H_{1,ij}(x)) f_j(x) + \Omega_{ij}(x,\epsilon)g_j(x)$$

the first term of the equation is the homogeneous part, while the non-homogeneous part has the structure:

$$\Omega_{ij}(x,\epsilon) = \omega_{0,ij}(x) + \epsilon \omega_{1,ij}(x) + \sum_{a} \frac{\omega_{a,ij}(x)}{\epsilon + \rho_{a}}$$

with $p_a \in \mathbb{R}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Semi-algorithmic Approach

- Step 2: We eliminate the term H_{0,ij}(x) rotating the homogeneous part of the system by the transformation f̃_i(x, ε) = h_{0,ia}(x)f_a(x, ε)
- h_{0,ij}(x) satisfies the differential equation:

$$dh_{0,ij}(x) = -h_{0,ia}(x)H_{0,aj}(x)$$

In the new basis the system of differential equations is:

$$d\tilde{f}_i(x) = \epsilon \tilde{H}_{1,ij}(x)\tilde{f}_j(x) + \tilde{\Omega}_{ij}(x,\epsilon)g_j(x)$$

Semi-algorithmic Approach

Step 3: We put in canonical form the non-homogeneous part shifting the \tilde{f}_i as:

$$ilde{f}_i(x) o ilde{f}_i(x) + \left(ilde{\omega}_{0,ij}(x) + \sum_a rac{ ilde{\omega}_{a,ij}(x)}{\epsilon + p_a}
ight) g_j(x)$$

In order to remove the first and third term in Ω_{ij}, ω_{0,ij} and ω_{a,ij} have to satisfy the differential equations:

$$d\tilde{\omega}_{0,ij} - \tilde{H}_{1,ib}\tilde{\omega}_{a,bj} + \tilde{\omega}_{a,ib}G_{a,bj} + \omega_{0,ij} = 0,$$

$$d\tilde{\omega}_{a,ij} + p_a \tilde{H}_{ib} \tilde{\omega}_{a,bj} - p_a \tilde{\omega}_{a,ib} G_{1,bj} + \omega_{a,ij} = 0$$

where $G_{1,ij}$ is the matrix relative to the system of differential equations for the subtopologies g_j :

$$dg_i(x) = \epsilon G_{1,ij}(x)g_j(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Master Integrals Computation

Computation settings

- Kinematics: incoming momenta: $p_1^2 = p_2^2 = 0$; outcoming momenta: $p_3^2 = p_4^2 = m_t^2$. Mandelstam variables: $s = (p_1 + p_2)^2$, $t = (p_1 - p_3)^2$, $u = (p_1 - p_4)^2$, $s + t + u = 2m_t^2$
- Scalar products:

$$\begin{aligned} D_{i} &= \{-k_{1}^{2}, -k_{2}^{2}, -(p_{1}+k_{1})^{2}, -(p_{1}+k_{1}+k_{2})^{2}, -(k_{1}+p_{1}+p_{2})^{2}, -(k_{2}+p_{1}+p_{2})^{2}, \\ &-(k_{1}+k_{2}+p_{1}+p_{2})^{2}, \ m_{t}^{2}-(k_{1}+k_{2}+p_{3})^{2}, \ m_{t}^{2}-(k_{2}+p_{3})^{2} \}. \end{aligned}$$

Topology A:

$$\int \mathcal{D}^d k_1 \mathcal{D}^d k_2 \frac{D_4^{-a_4} D_6^{-a_6}}{D_1^{a_1} D_2^{a_2} D_3^{a_3} D_5^{a_5} D_7^{a_7} D_8^{a_8} D_9^{a_9}},$$

Topology B:

$$\int \mathcal{D}^{d} k_{1} \mathcal{D}^{d} k_{2} \frac{D_{5}^{-b_{5}} D_{6}^{-b_{6}}}{D_{1}^{b_{1}} D_{2}^{b_{2}} D_{3}^{b_{3}} D_{4}^{b_{4}} D_{7}^{b_{7}} D_{8}^{b_{8}} D_{9}^{b_{9}}}$$
$$\mathcal{D}^{d} k_{i} = \frac{d^{d} k_{i}}{i\pi^{\frac{d}{2}}} e^{\epsilon \gamma_{E}} \left(\frac{m_{t}^{2}}{\mu^{2}}\right)^{\epsilon}$$

 a_i and b_i are integer numbers with $a_4, a_6, b_5, b_6 \leqslant 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Roots Linearization

The differential equations system depends on the following two roots of the kinematical invariants:

$$\sqrt{s(s-4m_t^2)}, \quad \sqrt{m_t^2 s(m_t^2-t)(s+t-m_t^2)},$$

It is possible to linearize them by means of the change of variables:

$$s = -m_t^2 \frac{(1-w)^2}{w},$$

$$t = -m_t^2 \frac{1-w+w^2-z^2}{z^2-w}$$

- Non-physical region: $s, t < 0 \Rightarrow 0 < w < 1, \sqrt{w} < z < \sqrt{1 w + w^2}$.
- Physical region: $s > 4m_t^2$, $t_{min} < t < t_{max}$, $u < 0 \Rightarrow -1 < w < 0$, 0 < -w < z < 1.

$$\begin{aligned} t_{min} &= m_t^2 - \frac{s}{2} - \frac{1}{2}\sqrt{s(s-4m_t^2)}, \\ t_{max} &= m_t^2 - \frac{s}{2} + \frac{1}{2}\sqrt{s(s-4m_t^2)}. \end{aligned}$$

Integration

Canonical Basis for the system of differential equations + No roots of kinematical invariants \Rightarrow the solution can be integrated order-by-order in the ϵ -expasion in terms of GPLs.

■ Alphabet: the matrix $\tilde{A}(\vec{x}) = \sum_k \tilde{A}^{(k)} \log(l_k)$ which defines the differential equations is characterized by the alphabet

$$\{l_k\} = \Big\{w, w - 1, w + 1, z, z - 1, z + 1, w - z, w + z, w - z^2, w^2 - w + 1 - z^2, \\ w^2 - z^2(w^2 - w + 1), w^2 - 3w + z^2 + 1\Big\}.$$

w-argument weights:

$$\left\{ \begin{aligned} 0, 1, -1, z, -z, z^2, \frac{1 - \sqrt{4z^2 - 3}}{2}, \frac{1 + \sqrt{4z^2 - 3}}{2}, \frac{z(z - \sqrt{4 - 3z^2})}{2(z^2 - 1)}, \\ \frac{z(z + \sqrt{4 - 3z^2})}{2(z^2 - 1)}, \frac{3 - \sqrt{5 - 4z^2}}{2}, \frac{3 + \sqrt{5 - 4z^2}}{2} \right\}, \end{aligned}$$

z-argument weights:

$$\{0, -1, 1, -i, i\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Numerical checks

The solution for the master integrals has been succesfully tested numerically both on the physical and non-physical regions.

- Numerical checks are performed evaluating numerically pre-canonical master integrals by means of public softwares SecDec [Borowka, Heinrich, Jones, Kerner, Schlenk, Zirke '15] and Fiesta [Smirnov, Tentyukov '14].
- Numerical checks for six and seven denominators integrals are made writing canonical MIs in terms of quasi-finite integrals [Panzer '14], [von Manteuffel, Panzer, Schabinger '15]. The numerical evaluation of the latter is more precise and allows for a better comparison with the analytic solution.
- All MIs are numerically cross-checked against the analytic solution obtained by Di Vita, Gehrmann, Laporta, Mastrolia, Primo, Schubert '19.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Top-Antitop production

00 00 ${}^{s} \bigoplus {}^{s} \bigoplus {}^{s} \bigoplus {}^{s} \bigoplus {}^{p_{3}} \bigoplus {}^{p_{3}} \bigoplus {}^{u} \bigoplus {}^{t} (\mathcal{T}_{2}^{A}, \mathcal{T}_{3}^{B}) (\mathcal{T}_{3}^{A}, \mathcal{T}_{3}^{B}) (\mathcal{T}_{3}^{A}, \mathcal{T}_{3}^{B})$ $(\mathcal{T}_{1}^{A}, \mathcal{T}_{2}^{B}) = (\mathcal{T}_{2}^{A})$ (T_8^A, T_7^B) (T_7^A, T_6^B) (T_{10}^A, T_8^B) (T_{10}^A, T_{16}^B) (T_{12}^B, T_{16}^B) (T_{17}^B) (\mathcal{T}_{11}^A) $(T_{12}^A, T_2^B) = (T_{13}^A, T_{10}^B)$ 5 $(\mathcal{T}_{12}^A, \mathcal{T}_{12}^B) = (\mathcal{T}_{12}^A, \mathcal{T}_{12}^B)$ (\mathcal{T}_{ve}^{A}) (\mathcal{T}_{17}^A) $(\mathcal{T}_{1\pi}^A)$ (T_{11}^B) (\mathcal{T}_{12}^B) $(\mathcal{T}_{m}^{A} \ \mathcal{T}_{m}^{B})$ (T_{2i}^B) (T_{ee}^A) $(\mathcal{T}_{2\pi}^A)$ M (\mathcal{T}_m^A) $(\mathcal{T}_{\infty}^{A})$ (\mathcal{T}_{n}^{A}) (\mathcal{T}_{m}^{A}) (\mathcal{T}_m^A) (\mathcal{T}_{n}^{A}) (\mathcal{T}_{m}^{B}) (\mathcal{T}_{2n}^A) -4 (\mathcal{T}_{m}^{A}) $(\mathcal{T}_{st}^A, \mathcal{T}_{st}^B) = (\mathcal{T}_{st}^A, \mathcal{T}_{st}^B)$ $(T_{2\pi}^B)$ (T_{20}^B) $(\mathcal{T}_{22}^A \ \mathcal{T}_{22}^B) = (\mathcal{T}_{24}^A \ \mathcal{T}_{22}^B) = (\mathcal{T}_{24}^A \ \mathcal{T}_{22}^B)$ (T_{26}^A, T_{23}^B) (\mathcal{T}_{in}^A) (\mathcal{T}_{41}^A) (\mathcal{T}_{15}^B) (T_{19}^B) (\mathcal{T}_{43}^A) (T_{45}^A) (T_{42}^A) $(\mathcal{T}_{is}^A \ \mathcal{T}_{is}^B)$ (T_{in}^A, T_{in}^B) $(T_{ie}^A T_{ie}^B)$ (T_{i2}^A, T_{i3}^B) (T_{ab}^B) (T_{nc}^B) (\mathcal{T}_{49}^A) (\mathcal{T}_{51}^A) (T_{50}^A) (T_{52}^A) (T_{d2}^B) (T^B_{aa})

- IBPs: We solved IBPs using FIRE [Smirnov] and Reduze2 [von Manteuffel, Studerus] we find 52 master integrals to be solved for topology A, and 44 for top B.
- Canonical Basis: We find the canonical basis for the system of differential equations.
- Roots Linearization: We were able to linearize all the roots of the kinematical invariants.
- All the master integrals are written in terms of GPLs.
- Numerical check of the solutions, both in the physical and non-physical regions.

(日) (四) (日) (日) (日)

Conclusions and outlooks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Amplitude

The computation of the MIs presented in this talk is the final ingredient needed to obtain an analytic expression for the two-loop corrections to the amplitude in the quark-annihilation channel for the $t\bar{t}$ production.

- Full square amplitude for the color coefficients B^{qq̄} and C^{qq̄} written in terms of canonical MIs;
- Optimization of the analytic expression: rewrite the whole result in terms of Lin;
- UV Renormalization;
- Numerical check of the IR poles;
- Numerical check against numerical calculations [Czakon '08].

Conclusions

- We evaluated analytically the last unknown MIs needed for the two-loop corrections to the amplitude in the quark-annihilation channel for the tt production process.
- The analytic expression is obtained by means of the Differential equations method.
- We found the Canonical basis for the differential equations system, we linearized the square roots of kinematical invariants, and we express the solution in terms of GPLs up to weight 4.
- The solution is been tested numerically against SecDec and Fiesta, and it is been cross-checked with Di Vita, Gehrmann, Laporta, Mastrolia, Primo, Schubert '19.