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Motivation

• Finite-temperature field theory
. fairly mature subject; textbooks [Kapusta 89; LeBellac 00; Kapusta/Gale 06; Laine/Vuorinen 17]

. relevant in cosmology (mostly weak int; QCD as background)
early univ, equilibration, Tmax = ?
DM searches, relic densities

. relevant in HIC (mainly QCD)
fireball lifetime ∼ 10 fm/c; Tmax ∼ 102 MeV
particle yields, jet quenching, plasma hydro

• equilibrium thermodynamics: imaginary time formalism, t→ iτ

. (grand) canonical ensemble, Z(T, µ) = Tr[e−(Ĥ−µN̂)/T ]

. path int quant, fields periodic: Z =
∫
Dφ e−

∫ 1/T
0

∫
ddxLE ⇐ d = 3− 2ε

. Fourier trafo discrete; mom-space measure T
∑

n∈ZZ
∫ ddp

(2π)d
≡ ∑∫

P

. bosonic prop ∼ [(2nπT )2 + ~p 2 + m2]−1

. Dirac prop ∼ [iγ0((2n + 1)πT + iµ) + i~γ~p + m]−1

• upshot: integrals→ sum-integrals
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Motivation

• clean sub-problem: vacuum-type sum-integrals
. relevance: free energy f = −T lnZ of a thermal system
. EoS, expansion rate, etc.
. in many settings, QCD effects dominant [Linde/IR problem tamed by EFT’s]

• even cleaner: massless bosonic (think gluons) vacuum-type sum-integrals
. state-of-the-art: 1-, 2-loop OK; 3-loop; isolated 4loop cases.
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Motivation

• first example: LO / 1-loop bosonic tadpole

• recall T = 0 case: Jν(m) ≡
∫ ddp

(2π)d
1

[p2+m2]ν
= [m2]d/2−ν × Γ(ν−d/2)

(4π)d/2 Γ(ν)

• at T 6= 0 therefore [writing P2 = P2
0 + ~p 2 with P0 = 2nπT , and d-dim vector ~p ]

I
η
ν (d) ≡ ∑∫

P

(P0)
η

[P 2]ν
= δηJν(0) + [1 + (−1)

η
]T

∞∑
n=1

(2nπT )
η
Jν(2nπT )

= 0 +
[1 + (−1)η]T ζ(2ν − η − d)

(2πT )2ν−η−d

Γ(ν − d
2)

(4π)d/2 Γ(ν)

. note that ’thermal part’ has the form ζ(neven − d)

• massless sum-integral⇔ massive (T=0) integral

• relevance: free E, selfE’s, Debye screening masses, etc.
. example: blackbody radiation / Stefan-Boltzmann law at LO

fQED = −π2T 4

90 [2 + 4 7
8Nf ] [↔ expansion rate of univ at T ∼ MeV]

fQCD = −π2T 4

90 [2(N 2
c − 1) + 4Nc

7
8Nf ]
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Motivation

• next step: NLO / 2-loop

. a number of worked-out examples in the literature

. general observation: factorization ∑∫
PQ

(· · ·) ∼ [
∑∫
P

(· · ·)]× [
∑∫
Q

(· · ·)]

. confirmed by (thermal adaptation) of IBP

. ⇒ Q: is this a theorem? [A: YES (for bos, m = µ = 0)]

• at higher orders (or with 1
ε from IBP pre-factors) need higher ε-terms of 2-loop sum-ints

. generic analytic results (in d) would be useful

• goal: devise a constructive proof of 2-loop factorization
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Setup

• recall from 1-loop: massless sum-integral⇔ massive (T=0) integral

• define massive 2-loop vacuum integral in d dimensions [we are interested in d = 3− 2ε]

B
ν1,ν2,ν3
m1,m2,m3

≡
∫
ddp

(2π)d

∫
ddq

(2π)d
1

[m2
1 + p2]ν1 [m2

2 + q2]ν2 [m2
3 + (p− q)2]ν3

• define massless bosonic 2-loop vacuum sum-integral [ν ≡ ν1 + ν2 + ν3 and η ≡ η1 + η2 + η3]

L
η1,η2,η3
ν1,ν2,ν3

≡ ∑∫
PQ

(P0)
η1 (Q0)

η2 (P0 −Q0)
η3

[P 2]ν1 [Q2]ν2 [(P −Q)2]ν3

=
T 2

(2πT )2ν−η−2d

∑
n1,n2∈ZZ

n
η1
1 n

η2
2 (n1 − n2)

η3 B
ν1,ν2,ν3
n1,n2,n1−n2

• remaining task: do double sum over known analytic result for B [Davydychev/Tausk 1992]

. known result is in terms of Appell’s hypergeometric function F4

. not practical: four infinite sums

• can do (much) better: ’masses’ are linearly related⇒ finite sums
. examine B from scratch, at special kinematic point
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Setup

• sort out the cases where masses of B can vanish
. decompose double-sum into sectors

where ’masses’ are always positive
. take into account that B depends on m2

i , use the integral’s symmetry

L
η1,η2,η3
ν1,ν2,ν3

=
T2 [1 + (−1)η]

(2πT )2ν−η−2d

{
1

2
δη1δη2δη3 B

ν1ν2ν3
0,0,0

+ ζ(2ν−η−2d)

[
(−)

η3δη1B
ν1,ν2,ν3
0,1,1 + δη2B

ν2,ν1,ν3
0,1,1 + δη3B

ν3,ν1,ν2
0,1,1 + 2

η3(−)
η2B

ν1,ν2,ν3
1,1,2

]

+ H̄
ν3,ν2,ν1
η3,η2,η1

+ (−)
η3H̄

ν3,ν1,ν2
η3,η1,η2

+ (−)
η2H

ν2,ν1,ν3
η2,η1,η3

+ (−)
η2H

ν1,ν2,ν3
η1,η2,η3

}

• 1st line: no-scale case of B → massless tadpole, = 0 in dim reg

• 2nd line: single-scale cases of B, double sum trivial→ ζ [explicit results not needed here]

• 3rd line: two types of double sums, each over B with m1 +m2 = m3

H
νa,νb,νc
ηa,ηb,ηc

≡
∑

n1>n2>0

n
ηa
1 n

ηb
2 (n1 + n2)

ηc B
νa,νb,νc
n1,n2,n1+n2

H̄
νa,νb,νc
ηa,ηb,ηc

≡
∑

n1>n2>0

(n1 − n2)
ηan

ηb
2 n

ηc
1 B

νa,νb,νc
n1−n2,n2,n1

6/16



Continuum integral B

• recall: need 2-loop massive vacuum integral Bν1,ν2,ν3
m1,m2,m3

at m3 = m1 +m2 (all mi > 0)

• IBP gives a recurrence that allows to shrink one line [Tarasov 1997]

2uB
ν1ν2ν3 =

{
11−

m1

[
c+ ν2
m2

−
c+ ν3
m3

]
+

22−

m2

[
c+ ν1
m1

−
c+ ν3
m3

]
+

33−

m3

[
c− ν1
m1

+
c− ν2
m2

]}
B
ν1ν2ν3

[u ≡ d+ 3− 2ν and c ≡ d+ 2− ν as well as ν = ν1 + ν2 + ν3]

• can one solve this explicitly?

. trivial boundary cond: B000 = 0, Bν100 = 0, Bν1ν20 = Jν1
(m1) Jν2

(m2) etc.

• experimental math: look at some low (index-) weight examples [xij ≡ mi/mj are mass ratios]

B
111

=
(d− 2)

2(d− 3)

{
−

B011

m2m3
−

B101

m1m3
+

B110

m1m2

}

B
211

=
(d− 2)

4(d− 5)

{
B011

m2
2m

2
3

+

[
(d− 4)

m3
m1
− 1

]
B101

m2
1m

2
3

−
[

(d− 4)
m2
m1

+ 1

]
B110

m2
1m

2
2

}
. . .

7/16



Continuum integral B

• observe lots of structure⇒ boldly conjecture the full result

B
ν1ν2ν3 ?!

= B
110
110

ν2−1∑
j=1−ν1

(−1)
ν
c
(ν)
ν1,ν2;j

m
d−ν+j
1 m

d−ν−j
2 + (231) + (312)

. coefficients c(ν)
νa,νb;j are rational functions in d

. symmetries c(ν)
νa,νb;j = c

(ν)
νb,νa;−j (with special case c(ν)

νa,νb;0 = c
(ν)
νb,νa;0)

. conjecture confirmed via recurrence to weight 18

• conjecture proven via induction over weight ν [details in forthcoming paper]

. relying on the IBP recurrence

. lots of rearrangements of sums; add cleverly constructed zero

. proof is constructive: gives fast algorithm to recursively construct c’s

• at higher ν, c’s contain huge numerator polynomials; plus lots of structure not shown here

• obtained some interesting new analytic results, e.g. for Baac and perms, such as

B
aac

=

a−1∑
k=0

ratack (d)

{
B110

(m1m2)2a+c−2

(m1 +m2)2k

(m1m2)k
+

c+k−1∑
j=0

ratackj(d)

[
B101

(m1m3)2a+c−2

(
m1
m3

)j−k
+ (1↔ 2)

]}

. needed B11c as derived directly from corresponding limit of F4 representation

. coeffs rat known analytically
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Continuum integral B

• to fix c’s in practice, yet another recurrence is most useful (= fast)

• mixing a number of IBP and dimensional relations [extracted from Tarasov 1997]

(d− 2)(d+ 3− 2ν)B
ν1,ν2,ν3(d) = λ(11

−
, 22
−
, 33
−

) dd
−
B
ν1,ν2,ν3(d)

λ(a, b, c) = a
2

+ b
2

+ c
2 − 2(ab+ bc+ ca)

dd
−
B
ν1,ν2,ν3(d) =

1

16π2
B
ν1,ν2,ν3(d− 2)

. reduces the weight ν by two in each step; use until one νi → 0 or -1

. lift the neg. index via 33−Bν1,ν2,0 = {2m1m2 + 11− + 22−}Bν1,ν2,0 and perms

. recurrence does not contain explicit mass-factors

. know the boundary integrals for arbitrary dimension d

• there is much more to be discovered..

• important: IBP rel asserts that B is polynomial in masses; allows to tackle sums
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Back to sum-integrals

• reminder to self: wanted to evaluate two-loop sum-integral L

. need to to perform the remaining (Matsubara) double sums H,H̄

. having the ’conjecture’ at hand, the mass structure of B is explicit

. can work out the sums without specifying the coefficient functions c(d)

• we will now show how the sums combine to
(a) evaluate to single and double zeta values only
(b) cancel all ζ(i, j) in the sum of all four terms of 3rd line of L-decomposition
(c) cancel all remaining single ζ(i) in 2nd line of L-decomposition
(d) leave us with products ζ(i) ζ(j) containing only ζ(neven − d)

• all of this allows us to write a compact final result, containing products of 1-loop tadpoles
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proof of statement (a)

• show that double sums evaluate to MZV only

• use the ’conjecture’ for H
. re-express the ’unwanted mass’ in the prefactor in terms of the two others

(introduces an additional binomial sum)
. shift summation indices and use c-symmetries [def `i ≡ ν − ηi − j − k]

H
ν2ν1ν3
η2η1η3

+H
ν1ν2ν3
η1η2η3

B110
110

=

ν2−1∑
j=1−ν1

(−1)
ν
c
(ν)
ν1,ν2;j

η3∑
k=0

(η3
k

) ∑
n1>n2>0

(
n
d−`1
2 n

d−2ν+η+`1
1 + n

d−`1
1 n

d−2ν+η+`1
2

)
+ (231) + (312)

• this contains only two combinations of double sums [1st instance contains non-MZV, cancels in sum]

∑
n1>n2>0

(
1

nα1
+

1

nα2

)
1

(n1 + n2)β
= ζ(β, α)−

1

2β
ζ(α+ β)

∑
n1>n2>0

(
1

nα1

1

n
β
2

+
1

nα2

1

n
β
1

)
= ζ(α)ζ(β)− ζ(α+ β)
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proof of statement (b)

• show that no MZV’s contribute

• massaging H̄ as above

H̄
ν3ν2ν1
η3η2η1

B110
110

=

ν2−1∑
j=1−ν1

(−1)
j
c
(ν)
ν1,ν2;j

η3∑
k=0

(η3
k

)
(−1)

k−η3
∑

n1>n2>0

n
d−2ν+η+`1
2 n

d−`1
1 + (231) + (312)

• double sums results in multiple zeta values [def `i = ν − ηi− j− k, di = `i− d and ei = 2ν − d− η− `1]

H̄
ν3ν2ν1
η3η2η1

+ (−1)η3H̄
ν3ν1ν2
η3η1η2

+ (−1)η2[H
ν2ν1ν3
η2η1η3

+H
ν1ν2ν3
η1η2η3

]

(−1)ν B110
110

=

ν2−1∑
j=1−ν1

c
(ν)
ν1,ν2;j

η3∑
k=0

(η3
k

){
(−)

`3

[
ζ(d1, e1) + ζ(e1, d1)

]
+ (−)

η2

[
ζ(e1)ζ(d1)− ζ(e1+d1)

]}
+ (231) + (312)

• simplify via shuffle rel ζ(a, b) + ζ(b, a) = ζ(a)ζ(b)− ζ(a+ b)

H̄
ν3ν2ν1
η3η2η1

+ (−1)η3H̄
ν3ν1ν2
η3η1η2

+ (−1)η2[H
ν2ν1ν3
η2η1η3

+H
ν1ν2ν3
η1η2η3

]

(−1)ν B110
110

=

ν2−1∑
j=1−ν1

c
(ν)
ν1,ν2;j

η3∑
k=0

(η3
k

){[
(−1)

`3 + (−1)
η2

][
ζ(e1)ζ(d1)− ζ(e1 + d1)

]}
+ (231) + (312)
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proof of statement (c)

• show that only products of single zeta values remain in L

• happy with the products of zetas (hints at 1-loop squared)

• remaining single zetas have arguments ei + di = 2ν − 2d− η ⇒ pull out of sums
. k-sums are trivial:

N∑
k=0

(N
k

)
x
k

= (1 + x)
N
,

N∑
k=0

(N
k

)
(−1)

k
= δN

. j-sum can then be seen to be nothing but the coefficients of single-scale cases of B

H̄
ν3ν2ν1
η3η2η1

+ (−1)
η3H̄

ν3ν1ν2
η3η1η2

+ (−1)
η2[H

ν2ν1ν3
η2η1η3

+H
ν1ν2ν3
η1η2η3

]

∣∣∣∣∣
single zetas

= −ζ(2ν − 2d− η) (−1)
ν
B

110
110

ν2−1∑
j=1−ν1

c
(ν)
ν1,ν2;j

[
(−1)

ν−η3−jδη3 + (−1)
η22

η3

]
+ (231) + (312)

= −ζ(2ν − 2d− η)

[
δη3B

ν3ν1ν2
011 + δη2B

ν2ν1ν3
011 + (−1)

η2δη1B
ν1ν2ν3
011 + (−1)

η22
η3B

ν1ν2ν3
112

]

. cancels exactly against the 2nd line of L-decomposition
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proof of statement (d)

• show that only ζ(n− d) at even integers n contribute

• re-write the specific combinations of prefactors [using `i ≡ ν − ηi − j − k]

L
η1η2η3
ν1ν2ν3

=
T2[1 + (−1)η]

(2πT )2ν−η−2d
B

110
110 ×

×
ν2−1∑
j=1−ν1

(−1)
ν
c
(ν)
ν1,ν2;j

η3∑
k=0

(η3
k

)
(−1)

η2 [1 + (−1)
`1] ζ(`1 − d) ζ(2ν − η − `1 − d)

+ (231) + (312)

• normalization factor B110
110 ≡

Γ2(1−d/2)

(4π)d
≡ [J1(d)]2
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Result

• convert ζ → 1-loop sum-ints Iην [use σn ≡ Max[n, 1] to take care of numerators]

ζ(2n− d) =
(2πT )2n−d

T J1(d)
În , with 1-loop sum-int În ≡

Γ(σn)

2

(
1− d

2

)
σn−1

I
2σn−2n
σn

• final result [recall ν = ν1 + ν2 + ν3, η = η1 + η2 + η3 and `i = ν − ηi − j − k]

L
η1η2η3
ν1ν2ν3

= [1 + (−1)η]
∑ν2−1
j=1−ν1

(−1)ν c
(ν)
ν1,ν2;j

∑η3
k=0

(η3
k

)
(−1)η2 [1 + (−1)`1] Î`1

2

Î2ν−η−`1
2

+ (231) + (312)

• some examples (checks against literature, and new):

L
000
111 = 0

L
220
311 = −

(d− 4)(d2 − 8d+ 19)

4(d− 7)(d− 5)
I
0
2 I

0
1

L
000
114 = −

4 I03 I
0
3

(d− 9)(d− 7)(d− 4)(d− 2)
−

6 I02 I
0
4

(d− 9)(d− 2)

L
000
116 = −

36 I04 I
0
4

(d− 13)(d− 11)(d− 9)(d− 6)(d− 4)(d− 2)
−

48 I03 I
0
5

(d− 13)(d− 11)(d− 4)(d− 2)
−

10 I02 I
0
6

(d− 13)(d− 2)
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Outlook

• thermal field theory: phenomenologically relevant for cosmology and HIC
. perturbative tools (by far) not as well developed/automatized as for collider physics
. here: first derivation of a parametric IBP solution

• massless 2-loop vacuum-type sum-integrals completely understood
. get closed form for coeffs c?

• generalizations of 2-loop case?
. massless fermions
. massive particles

(different game: not even massive 1-loop sum-int known analytically)
. chemical potentials

• generalizations to higher loops?
. some strikingly simple relations known via IBP

e.g. 3-loop massless benz-type sum-integral vanishes
. other known ε-expansions of 3-loop masters show more complicated structure
. useful to exploit known properties of 3d massive integrals at T = 0?
. few useful analytic results available
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Continuum integral B: minimizing c’s

• express the coefficients c(ν) at j = 0 in terms of the j > 0 ones

. compare ’conjecture’ with well-known result for 1-scale case Bν1ν2ν3
0,m,m [e.g. Vladimirov 1980]

c
(ν)
νa,νb;0

= β
ν−νa−νb,νa,νb −

νb−1∑
j=1−νa

(−1)
j
c
(ν)
νa,νb;j

[1− δj ]

β
ν1ν2ν3 ≡

Γ(ν1 + ν2 − d/2)Γ(ν1 + ν3 − d/2)Γ(d/2− ν1)Γ(ν − d)

Γ(ν2)Γ(ν3)Γ2(1− d/2)Γ(d/2)Γ(ν1 + ν − d)

. in view of symmetries of the c’s, it is now sufficient to specify them for j > 0
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