$H \rightarrow b\bar{b}$ at N3LO accuracy

Roberto Mondini, University at Buffalo

RM, Matthew Schiavi, Ciaran Williams, JHEP 1906 (2019) 079
RM and Ciaran Williams, JHEP 1906 (2019) 120
Introduction

From Higgs observation in LHC Run I to precision Higgs measurements in Run II:

- Access different production and decay mechanisms
- Precisely probe couplings to other SM particles
Introduction

From Higgs observation in LHC Run I to precision Higgs measurements in Run II:

- Access different production and decay mechanisms
- Precisely probe couplings to other SM particles
Introduction

At future colliders, couplings such as Hbb will be measured at the sub-percent level.

The increasing experimental precision mandates a similar increase in the precision of the corresponding theoretical predictions.

from M. Mangano’s Pheno 2019 talk

<table>
<thead>
<tr>
<th></th>
<th>HL-LHC $\delta \Gamma_H / \Gamma_H$ (%)</th>
<th>FCC-ee $\delta g_{HZZ} / g_{HZZ}$ (%)</th>
<th>FCC-hh $\delta g_{HWW} / g_{HWW}$ (%)</th>
<th>FCC-hh $\delta g_{Hbb} / g_{Hbb}$ (%)</th>
<th>FCC-hh $\delta g_{Hcc} / g_{Hcc}$ (%)</th>
<th>FCC-hh $\delta g_{Hgg} / g_{Hgg}$ (%)</th>
<th>FCC-hh $\delta g_{Hgg} / g_{Hgg}$ (2.5 (gg->H))</th>
<th>FCC-hh $\delta g_{Hcc} / g_{Hcc}$ (%)</th>
<th>FCC-hh $\delta g_{Hgg} / g_{Hgg}$ (%)</th>
<th>FCC-hh $\delta g_{Hcc} / g_{Hcc}$ (%)</th>
<th>FCC-hh $\delta g_{Hgg} / g_{Hgg}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SM</td>
<td>1.3</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>1.01</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>$\delta g_{HZZ} / g_{HZZ}$ (%)</td>
<td>1.5</td>
<td>0.17</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>0.17</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>$\delta g_{HWW} / g_{HWW}$ (%)</td>
<td>1.7</td>
<td>0.43</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>0.43</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>$\delta g_{Hbb} / g_{Hbb}$ (%)</td>
<td>3.7</td>
<td>0.61</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>0.61</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>$\delta g_{Hcc} / g_{Hcc}$ (%)</td>
<td>~ 70</td>
<td>1.21</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>1.21</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>$\delta g_{Hgg} / g_{Hgg}$ (%)</td>
<td>2.5 (gg->H)</td>
<td>1.01</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>1.01</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>$\delta g_{Hcc} / g_{Hcc}$ (%)</td>
<td>1.9</td>
<td>0.74</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>0.74</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>$\delta g_{Hgg} / g_{Hgg}$ (%)</td>
<td>4.3</td>
<td>9.0</td>
<td>0.65 (*)</td>
<td>tbd</td>
<td>tbd</td>
<td>9.0</td>
<td>0.65 (*)</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>$\delta g_{Hcc} / g_{Hcc}$ (%)</td>
<td>1.8</td>
<td>3.9</td>
<td>0.4 (*)</td>
<td>tbd</td>
<td>tbd</td>
<td>3.9</td>
<td>0.4 (*)</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>$\delta g_{Hgg} / g_{Hgg}$ (%)</td>
<td>3.4</td>
<td>~10 (indirect)</td>
<td>0.95 (*)</td>
<td>tbd</td>
<td>tbd</td>
<td>~10 (indirect)</td>
<td>0.95 (*)</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>$\delta g_{Hcc} / g_{Hcc}$ (%)</td>
<td>9.8</td>
<td>~10 (indirect)</td>
<td>0.9 (*)</td>
<td>tbd</td>
<td>tbd</td>
<td>~10 (indirect)</td>
<td>0.9 (*)</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td></td>
<td>$\delta g_{Hgg} / g_{Hgg}$ (%)</td>
<td>50</td>
<td>~44 (indirect)</td>
<td>6.5</td>
<td>tbd</td>
<td>tbd</td>
<td>~44 (indirect)</td>
<td>6.5</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
</tbody>
</table>

- pp at 14 TeV
 - 3 ab$^{-1}$
- pp at 100 TeV
- e^+e^- at 91, 160, 240, 365 GeV
- ep at 3.5 TeV
Overview of the calculation

\[\Gamma_{H \to b\bar{b}} = \Gamma_{H \to b\bar{b}}^{\text{LO}} + \Delta\Gamma_{H \to b\bar{b}}^{\text{NLO}} + \Delta\Gamma_{H \to b\bar{b}}^{\text{NNLO}} + \Delta\Gamma_{H \to b\bar{b}}^{\text{N3LO}} + \Delta\Gamma_{H \to b\bar{b}}^{\text{N4LO}} + \ldots \]

Inclusively known up to:

- **N4LO QCD** [Baikov, Chetyrkin, Kuhn hep-ph/0511063]
- **NLO EW** [Dabelstein, Hollik (1992); Kataev hep-ph/9708292]
- **Mixed QCDxEW** [Kataev hep-ph/9708292; Mihaila, Schmidt, Steinhauser 1509.02294] (also QCDxEW master integrals for Htt coupling [Chaubey, Weinzierl 1904.00382])

Differentially:

- **NNLO QCD** [Anastasiou, Herzog, Lazopoulos 1110.2368; Del Duca, Duhr, Somogyi, Tramontano, Trócsányi 1501.07226; Bernreuther, Cheng, Si 1805.06658]
- **Interfaced to VH production at NNLO QCD** [Ferrera, Somogyi, Tramontano 1705.10304; Caola, Luisoni, Melnikov, Röntsch 1712.06954; Gauld, Gehrmann-De Ridder, Glover, Huss, Majer 1907.05836]

Aim: provide fully-differential predictions at N3LO QCD accuracy
Overview of the calculation

- Treat the bottom quark as massless
- Focus on y_b^2 terms

\[
\Gamma^{N3LO}_{H\rightarrow bb} = y_b^2 A_b + \alpha_s y_b^2 B_b \\
+ \alpha_s^2 (y_b^2 C_b + y_b y_t C_{bt}) \\
+ \alpha_s^3 (y_b^2 D_b + y_b y_t D_{bt} + y_t^2 D_t)
\]

\[y_b y_t C_{bt}\]

\[y_t^2 D_t\]

+ $\mathcal{O}(\alpha_s)$ corrections

Ongoing work to include neglected terms (as well as EW and QCDxEW)

[Primo, Sasso, Somogyi, Tramontano 1812.07811]

talk by U. Schubert
Overview of the calculation

Differential N3LO coefficient:

\[
\frac{d \Delta \Gamma^{N3LO}_{H \rightarrow b\bar{b}}}{d \mathcal{O}_m} = \int d\Gamma_{H \rightarrow b\bar{b}}^{VVV} F^m_2(\Phi_2) d\Phi_2 \\
+ \int d\Gamma_{H \rightarrow b\bar{b}}^{RVV} F^m_3(\Phi_3) d\Phi_3 \\
+ \int d\Gamma_{H \rightarrow b\bar{b}}^{RRV} F^m_4(\Phi_4) d\Phi_4 \\
+ \int d\Gamma_{H \rightarrow b\bar{b}}^{RRR} F^m_5(\Phi_5) d\Phi_5
\]
Overview of the calculation

Differential N3LO coefficient:

\[
\frac{d \Delta \Gamma_{H \to b \bar{b}}^{\text{N3LO}}}{d \mathcal{O}_m} = \int d\Gamma_{H \to b \bar{b}}^{VVV} F_2^m(\Phi_2) d\Phi_2 \\
+ \int d\Gamma_{H \to b \bar{b}}^{RVV} F_3^m(\Phi_3) d\Phi_3 \\
+ \int d\Gamma_{H \to b \bar{b}}^{RRV} F_4^m(\Phi_4) d\Phi_4 \\
+ \int d\Gamma_{H \to b \bar{b}}^{RRR} F_5^m(\Phi_5) d\Phi_5
\]

triple-virtual (3 loops, 2 partons)
Overview of the calculation

Differential N3LO coefficient:

\[
\frac{d \Delta \Gamma^{N3LO}}{d \mathcal{O}_m}_{H \rightarrow b \bar{b}} = \int d\Gamma_{H \rightarrow b \bar{b}}^{VVV} F_2^m(\Phi_2) d\Phi_2 + \int d\Gamma_{H \rightarrow b \bar{b}}^{RVV} F_3^m(\Phi_3) d\Phi_3 + \int d\Gamma_{H \rightarrow b \bar{b}}^{RRV} F_4^m(\Phi_4) d\Phi_4 + \int d\Gamma_{H \rightarrow b \bar{b}}^{RRR} F_5^m(\Phi_5) d\Phi_5
\]

triple-virtual (3 loops, 2 partons)
real double-virtual (2 loops, 3 partons)
Overview of the calculation

Differential N3LO coefficient:

\[
\frac{d \Delta \Gamma^{\text{N3LO}}_{H \rightarrow bb}}{d \mathcal{O}_m} = \int d\Gamma^{VVV}_{H \rightarrow bb} F_m^m(\Phi_2) d\Phi_2 \\
+ \int d\Gamma^{RVV}_{H \rightarrow bb} F_m^m(\Phi_3) d\Phi_3 \\
+ \int d\Gamma^{RRV}_{H \rightarrow bb} F_m^m(\Phi_4) d\Phi_4 \\
+ \int d\Gamma^{RRR}_{H \rightarrow bb} F_m^m(\Phi_5) d\Phi_5
\]

- triple-virtual (3 loops, 2 partons)
- real double-virtual (2 loops, 3 partons)
- double-real virtual (1 loop, 4 partons)
Overview of the calculation

Differential N3LO coefficient:

\[
\frac{d \Delta \Gamma^{N3LO}_{H \to b\bar{b}}}{d \mathcal{O}_m} = \int d\Gamma^{VVV}_{H \to b\bar{b}} F_2^m(\Phi_2) d\Phi_2 \\
+ \int d\Gamma^{RVV}_{H \to b\bar{b}} F_3^m(\Phi_3) d\Phi_3 \\
+ \int d\Gamma^{RRV}_{H \to b\bar{b}} F_4^m(\Phi_4) d\Phi_4 \\
+ \int d\Gamma^{RRR}_{H \to b\bar{b}} F_5^m(\Phi_5) d\Phi_5
\]

- triple-virtual (3 loops, 2 partons)
- real double-virtual (2 loops, 3 partons)
- double-real virtual (1 loop, 4 partons)
- triple-real (0 loops, 5 partons)
Overview of the calculation

\[
\frac{d \Delta \Gamma^{N3LO}_{H \rightarrow bb}}{d O_m} = \int d\Gamma_{H \rightarrow bb}^{VVV} F^m_2(\Phi_2) d\Phi_2 \\
+ \int d\Gamma_{H \rightarrow bb}^{RVV} F^m_3(\Phi_3) d\Phi_3 \\
+ \int d\Gamma_{H \rightarrow bb}^{RRV} F^m_4(\Phi_4) d\Phi_4 \\
+ \int d\Gamma_{H \rightarrow bb}^{RRR} F^m_5(\Phi_5) d\Phi_5
\]

\(F^m_i(\Phi_i)\) uses a jet-clustering algorithm to define an \(m\)-jet observable from \(i\) final-state partons

Each contribution contains soft and collinear IR divergences that cancel upon combination into a suitably-inclusive observable
Projection-to-Born method

We use the Projection-to-Born (P2B) method to deal with the IR divergences [Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660]

Main idea: construct local counter-terms for the matrix elements projected onto a LO (Born) phase space.
Projection-to-Born method

We use the Projection-to-Born (P2B) method to deal with the IR divergences [Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660]

Main idea: construct local counter-terms for the matrix elements projected onto a LO (Born) phase space.

Example with $i=5$ partons clustered into $m=2$ jets:
Projection-to-Born method

We use the Projection-to-Born (P2B) method to deal with the IR divergences
[Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660]

Main idea: construct local counter-terms for the matrix elements projected
onto a LO (Born) phase space.

Example with $i=5$ partons clustered into $m=2$ jets:

Generated event with $|\mathcal{M}|^2$

$$F_5^2(\Phi_5)$$
We use the Projection-to-Born (P2B) method to deal with the IR divergences [Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660]

Main idea: construct local counter-terms for the matrix elements projected onto a LO (Born) phase space.

Example with $i=5$ partons clustered into $m=2$ jets:

\[|M|^2 \times \text{cluster} - |M|^2 \times F_5^2(\Phi_5) - |M|^2 \times F_2^2(\Phi_B) \]
Projection-to-Born method

\[|\mathcal{M}|^2 \times \left(F_5^2(\Phi_5) - F_2^2(\Phi_B) \right) \]

The IR divergences cancel exactly when the full phase space matches the Born-projected phase space.

This is the triple-unresolved region.

Born phase space in the Higgs rest frame:

\[\Phi_B = \{p_1, p_2\} \]
\[p_1 = \frac{m_H}{2}(1, \mathbf{n}_j) \]
\[p_2 = \frac{m_H}{2}(1, -\mathbf{n}_j) \]

with \(\mathbf{n}_j \) the direction of the leading jet.
Projection-to-Born method

To restore the N3LO coefficient we need to add back the counter-term that we arbitrarily subtracted:

\[
\frac{d \Delta \Gamma^{N3LO}_{H \rightarrow b \bar{b}}}{d \mathcal{O}_m} = + \int d\Gamma_{H \rightarrow b \bar{b}}^{RVV} [F_{3m}(\Phi_3) - F_{2m}(\Phi_B)] d\Phi_3 \\
+ \int d\Gamma_{H \rightarrow b \bar{b}}^{RRR} [F_{4m}(\Phi_4) - F_{2m}(\Phi_B)] d\Phi_4 \\
+ \int d\Gamma_{H \rightarrow b \bar{b}}^{RRR} [F_{5m}(\Phi_5) - F_{2m}(\Phi_B)] d\Phi_5 \\
+ \int d\Gamma_{H \rightarrow b \bar{b}}^{VVV} F_{2m}(\Phi_B) d\Phi_2 + \int d\Gamma_{H \rightarrow b \bar{b}}^{RVV} F_{2m}(\Phi_B) d\Phi_3 \\
+ \int d\Gamma_{H \rightarrow b \bar{b}}^{RRR} F_{2m}(\Phi_B) d\Phi_4 + \int d\Gamma_{H \rightarrow b \bar{b}}^{RRR} F_{2m}(\Phi_B) d\Phi_5
\]
To restore the N3LO coefficient we need to add back the counter-term that we arbitrarily subtracted:

\[
\frac{d \Delta \Gamma^{N3LO}}{d \mathcal{O}_m} = \int \frac{d \Gamma^{RVV}_{H \rightarrow b \bar{b}}}{d \mathcal{O}_m} \left[F_3^m(\Phi_3) - F_2^m(\Phi_B) \right] d\Phi_3 \\
+ \int \frac{d \Gamma^{RRV}_{H \rightarrow b \bar{b}}}{d \mathcal{O}_m} \left[F_4^m(\Phi_4) - F_2^m(\Phi_B) \right] d\Phi_4 \\
+ \int \frac{d \Gamma^{RRR}_{H \rightarrow b \bar{b}}}{d \mathcal{O}_m} \left[F_5^m(\Phi_5) - F_2^m(\Phi_B) \right] d\Phi_5 \\
+ \int \frac{d \Gamma^{VVV}_{H \rightarrow b \bar{b}}}{d \mathcal{O}_m} F_2^m(\Phi_B) d\Phi_2 + \int \frac{d \Gamma^{RVV}_{H \rightarrow b \bar{b}}}{d \mathcal{O}_m} F_2^m(\Phi_B) d\Phi_3 \\
+ \int \frac{d \Gamma^{RRR}_{H \rightarrow b \bar{b}}}{d \mathcal{O}_m} F_2^m(\Phi_B) d\Phi_4 + \int \frac{d \Gamma^{RRR}_{H \rightarrow b \bar{b}}}{d \mathcal{O}_m} F_2^m(\Phi_B) d\Phi_5
\]

\[
\frac{d \Delta \Gamma^{N3LO, incl}}{d \mathcal{O}_m} = \int \Delta \Gamma^{N3LO}_{H \rightarrow b \bar{b}} F_2^m(\Phi_B) d\Phi_B
\]

Ingredient 1: Inclusive N3LO $H \rightarrow b \bar{b}$ width as a function of the Born kinematics
Projection-to-Born method

To restore the N3LO coefficient we need to add back the counter-term that we arbitrarily subtracted:

\[
\frac{d \Delta \Gamma_{H \rightarrow b \bar{b}}^{N3LO}}{d \mathcal{O}_m} = + \int d\Gamma_{H \rightarrow b \bar{b}}^{RVV}\left[F_{3}^{m}(\Phi_{3}) - F_{2}^{m}(\Phi_{B}) \right] d\Phi_{3} \\
+ \int d\Gamma_{H \rightarrow b \bar{b}}^{RRV}\left[F_{4}^{m}(\Phi_{4}) - F_{2}^{m}(\Phi_{B}) \right] d\Phi_{4} \\
+ \int d\Gamma_{H \rightarrow b \bar{b}}^{RRR}\left[F_{5}^{m}(\Phi_{5}) - F_{2}^{m}(\Phi_{B}) \right] d\Phi_{5} \\
+ \int d\Gamma_{H \rightarrow b \bar{b}}^{VVV}\Phi_{2}^{m}(\Phi_{B}) d\Phi_{2} + \int d\Gamma_{H \rightarrow b \bar{b}}^{RVV}\Phi_{2}^{m}(\Phi_{B}) d\Phi_{3} \\
+ \int d\Gamma_{H \rightarrow b \bar{b}}^{RRV}\Phi_{2}^{m}(\Phi_{B}) d\Phi_{4} + \int d\Gamma_{H \rightarrow b \bar{b}}^{RRR}\Phi_{2}^{m}(\Phi_{B}) d\Phi_{5}
\]

Ingredient 2: Differential NNLO $H \rightarrow b\bar{b}j$ width and its Born projection
Differential NNLO $H\rightarrow b\bar{b}j$ width

$$\frac{d \Delta \Gamma_{H\rightarrow b\bar{b}j}^{\text{NNLO}}}{d \mathcal{O}_m} = \int d\Gamma_{H\rightarrow b\bar{b}j}^{VV} F_3^m(\Phi_3) d\Phi_3$$

$$+ \int d\Gamma_{H\rightarrow b\bar{b}j}^{RV} F_4^m(\Phi_4) d\Phi_4$$

$$+ \int d\Gamma_{H\rightarrow b\bar{b}j}^{RR} F_5^m(\Phi_5) d\Phi_5$$
Differential NNLO $H \to b\bar{b}j$ width

\[\frac{d \Delta \Gamma_{H \to b\bar{b}j}^{\text{NNLO}}}{d \mathcal{O}_m} = \int d\Gamma_{H \to b\bar{b}j}^{VV} F_3^m(\Phi_3) d\Phi_3 \]
\[+ \int d\Gamma_{H \to b\bar{b}j}^{RV} F_4^m(\Phi_4) d\Phi_4 \]
\[+ \int d\Gamma_{H \to b\bar{b}j}^{RR} F_5^m(\Phi_5) d\Phi_5 \]

two-loop amplitudes for $H \to b\bar{b}g$
Differential NNLO $H \to b\bar{b}j$ width

\[
\frac{d\Delta\Gamma^{\text{NNLO}}_{H \to b\bar{b}j}}{d\mathcal{O}_m} = \int d\Gamma_{H \to b\bar{b}j}^{VV} F_m^3(\Phi_3) d\Phi_3 \\
+ \int d\Gamma_{H \to b\bar{b}j}^{RV} F_m^4(\Phi_4) d\Phi_4 \\
+ \int d\Gamma_{H \to b\bar{b}j}^{RR} F_m^5(\Phi_5) d\Phi_5
\]

two-loop amplitudes for $H \to bbg$

one-loop amplitudes for $H \to bbgg$ and $H \to bbqq$
Differential NNLO $H \to b \bar{b} j$ width

$$\frac{d \Delta \Gamma_{H \to b \bar{b} j}^{\text{NNLO}}}{d \mathcal{O}_m} = \int d\Gamma_{H \to b \bar{b} j}^{VV} F_3^m(\Phi_3) d\Phi_3$$

$$+ \int d\Gamma_{H \to b \bar{b} j}^{RV} F_4^m(\Phi_4) d\Phi_4$$

$$+ \int d\Gamma_{H \to b \bar{b} j}^{RR} F_5^m(\Phi_5) d\Phi_5$$

two-loop amplitudes for $H \to b \bar{b}g$

one-loop amplitudes for $H \to b \bar{b}gg$ and $H \to b \bar{b}qqg$

tree-level amplitudes for $H \to b \bar{b}ggg$ and $H \to b \bar{b}qqg$
Differential NNLO $H \to b\bar{b}j$ width

Two-loop $H \to b\bar{b}g$ amplitudes calculated using the MIs from [Gehrmann, Remiddi hep-ph/0008287 and hep-ph/0101124]

Checks:
- IR poles against the known IR structure [Catani hep-ph/9802439]
- Finite part against an independent calculation [Ahmed, Mahakhud, Mathews, Rana, Ravindran 1405.2324]
- Two-loop soft/collinear-gluon limits

One-loop $H \to 4$ partons amplitudes calculated analytically using generalized unitarity for helicity amplitudes [Bern, Dixon, Dunbar, Kosower hep-ph/9403226]

Tree-level $H \to 5$ partons amplitudes calculated using BCFW recursion relations [Britto, Cachazo, Feng, Witten hep-th/0501052]
N-jettiness slicing

We regulate the IR divergences present in our NNLO $H \to b\bar{b}j$ calculation by using **N-jettiness slicing** [Boughezal, Focke, Liu, Petriello 1504.02131; Gaunt, Stahlhofen, Tackmann, Walsh 1505.04794]. For a parton-level event we define the 3-jettiness variable [Stewart, Tackmann, Waalewijn 1004.2489]:

$$\tau_3 = \sum_{j=1,m} \min_{i=1,2,3} \left\{ \frac{2q_i \cdot p_j}{Q_i} \right\}$$

- The index j runs over the m partons in the phase space
- The momenta q_i are the momenta of the three most energetic jets
- $Q_i = 2E_i$ with E_i the energy of the i-th jet.
N-jettiness slicing

\[H \rightarrow b\bar{b}j \text{ at NNLO} \]

\[\tau_3 = \sum_{j=1, m} \min_{i=1, 2, 3} \left\{ \frac{2q_i \cdot p_j}{Q_i} \right\} \approx 0 \]

Doubly-unresolved region

All radiation is either soft or collinear
N-jettiness slicing

\[H \rightarrow b\bar{b}j \text{ at NNLO} \]

\[
\tau_3 = \sum_{j=1,m} \min_{i=1,2,3} \left\{ \frac{2q_i \cdot p_j}{Q_i} \right\} > 0
\]

Singly-unresolved region
At least one parton is resolved
N-jettiness slicing

Introduce a variable τ_3^{cut} that separates the phase space into two regions:
N-jettiness slicing

Introduce a variable τ_3^{cut} that separates the phase space into two regions:

- The region $\tau_3 < \tau_3^{\text{cut}}$ contains all of the \textit{doubly-unresolved} regions of phase space and here the decay width is approximated using this factorization theorem from SCET [Stewart, Tackmann, Waalewijn 0910.0467]:

$$\Gamma_{H \to b\bar{b}j} (\tau_3 < \tau_3^{\text{cut}}) \approx \int \prod_{i=1}^{3} J_i \otimes S \otimes \mathcal{H} + \mathcal{O}(\tau_3^{\text{cut}})$$

\textbf{Jet functions} \hspace{1cm} \textbf{Soft function} \hspace{1cm} \textbf{Hard function}

[Becher, Neubert hep-ph/0603140] \hspace{1cm} [Boughezal, Liu, Petriello 1504.02540; Campbell, Ellis, RM, Williams 1711.09984] \hspace{1cm} (finite part of the two-loop amplitudes)
N-jettiness slicing

Introduce a variable τ_3^{cut} that separates the phase space into two regions:

- The region $\tau_3 < \tau_3^{\text{cut}}$ contains all of the *doubly-unresolved* regions of phase space and here the decay width is approximated using this factorization theorem from SCET [Stewart, Tackmann, Waalewijn 0910.0467]:

\[
\Gamma_{H \to b \bar{b} j j} (\tau_3 < \tau_3^{\text{cut}}) \approx \int \prod_{i=1}^{3} \mathcal{J}_i \otimes S \otimes \mathcal{H} + \mathcal{O}(\tau_3^{\text{cut}})
\]

Jet functions

Soft function

[Boughezal, Liu, Petriello 1504.02540; Campbell, Ellis, RM, Williams 1711.09984]

Hard function

(finite part of the two-loop amplitudes)

- The region $\tau_3 > \tau_3^{\text{cut}}$ contains the *singly-unresolved* and *fully-resolved* regions. It is the NLO calculation of $H \to b \bar{b} j j$. In our case we regulate the IR divergences using Catani-Seymour dipoles [hep-ph/9605323].
Results

We have implemented our NNLO $H \rightarrow b\bar{b}j$ calculation into a parton-level MC code based on MCFM [Campbell, Ellis et al].

We use the **Durham jet algorithm**. Starting at the parton level, for every pair of partons (i,j):

$$y_{ij} = \frac{2 \min(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{Q^2}$$

If $y_{ij} < y_{\text{cut}}$ the pairs are combined into a new object with momentum $p_i + p_j$. The algorithm repeats until no further clusterings are possible and the remaining objects are classified as jets.

We present results in the Higgs *rest frame*.
Validation of the $H \to b\bar{b}j$ NNLO N-jettiness calculation

Dependence of the NNLO $H \to 3j$ coefficient on the unphysical parameter τ_3^{cut} for three clustering options.

Asymptotic behavior is established in each region.

$y_{\text{cut}} = 0.0001$ corresponds to imposing a very weak jet cut.
P2B with N-jettiness slicing

\[
\frac{d \Delta \Gamma^{N3LO}_{H \to bb}}{d \mathcal{O}_m} = \frac{d \Delta \Gamma^{N3LO, incl}_{H \to bb}}{d \mathcal{O}^B_m} \\
+ \int d\Gamma^{RVV}_{H \to bb} [F_3^m(\Phi_3) - F_2^m(\Phi_B)] d\Phi_3 \\
+ \int d\Gamma^{RRV}_{H \to bb} [F_4^m(\Phi_4) - F_2^m(\Phi_B)] d\Phi_4 \\
+ \int d\Gamma^{RRR}_{H \to bb} [F_5^m(\Phi_5) - F_2^m(\Phi_B)] d\Phi_5
\]

Problem when \(m=2 \): how to define 3-jettiness for 2-jet events?

Differential NNLO \(H \to bb \) calculation using N-jettiness slicing
Focus on triple-real contribution as an example:

\[
\int d\Gamma_{H \rightarrow b\bar{b}}^{RRR} \left[F_5^m (\Phi_5) - F_2^m (\Phi_B) \right] d\Phi_5
\]

\(F_5^m (\Phi_5)\) picks out the various jet topologies (2-, 3-, 4-, or 5-jet events):
P2B with N-jettiness slicing

Focus on triple-real contribution as an example:

\[
\int d\Gamma_{H \rightarrow b\bar{b}}^{RRR} \left[F_5^m(\Phi_5) - F_2^m(\Phi_B) \right] d\Phi_5
\]

\(F_5^m(\Phi_5) \) picks out the various jet topologies (2-, 3-, 4-, or 5-jet events):

a) events with 3 or more jets:
 straightforward to compute 3-jettiness
P2B with N-jettiness slicing

Focus on triple-real contribution as an example:

\[\int d\Gamma_{H\rightarrow b\bar{b}}^{RRR} [F_5^m(\Phi_5) - F_2^m(\Phi_B)] d\Phi_5 \]

\(F_5^m(\Phi_5) \) picks out the various jet topologies (2-, 3-, 4-, or 5-jet events):

b) events with 2 jets: reverse last step of clustering to obtain exactly 3 sub-jets. Then apply 3-(sub)jettiness slicing.
Validation of the P2B+SCET method at NNLO

We introduce the transverse momentum and pseudo-rapidity of the leading jet with respect to a fictitious beam axis to fully test the IR cancellations.
Validation at N3LO

Dependence of the 2-jet N3LO coefficient on the 3-(sub)jettiness slicing parameter τ_3^{cut}

- The change in the N3LO coefficient in this region is about 1%.

Use $\tau_3^{\text{cut}} = 0.02$ GeV for predictions.
The observed pattern is similar to the results obtained for $e^+e^- \rightarrow \text{jets}$ at the same order [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 0802.0813; Weinzierl 0807.3241]
The size of the corrections is observable-dependent. The scale dependence is considerably reduced as higher-order terms are included.
Can broadly observe three regions:

1) LO boundary: all phase spaces contribute, good convergence of the series and small residual scale dependence

2) “Bulk”: only phase spaces with 3+ partons contribute, NNLO-like calculation

3) “Tail”: only phase spaces with 4+ partons contribute, NLO-like calculation
• We entered an era of precision Higgs physics at the LHC.

• Precise theoretical predictions for Higgs observables are needed to successfully compare theory and experiment.

• We computed the $H \rightarrow b\bar{b}$ decay at N3LO accuracy focusing on the contribution in which the Higgs boson couples directly to massless bottom quarks.

• Using the Projection-to-Born method + N-jettiness slicing, we produced differential distributions and jet rates in the Higgs rest frame.

• Our calculation could be used outside of the rest frame for LHC/FC applications.
Extra slides
Inclusive N3LO $H \to b\bar{b}$ width

Can be obtained through the *optical theorem* by computing the massless $\mathcal{O}(\alpha_s^3)$ four-loop correlator of the quark-scalar current [Chetyrkin hep-ph/9608318]

\[
\Delta \Gamma_{H \to b\bar{b}}^{N3LO} = \Gamma_{H \to b\bar{b}}^{LO} \left(\frac{\alpha_s}{\pi} \right)^3 \left[s_3 + L \left(2s_2 \beta_0 + s_1 \beta_1 + 2s_2 \gamma_m^0 + 2s_1 \gamma_m^1 + 2 \gamma_m^2 \right) \\
+ L^2 \left(s_1 \beta_0^2 + 3s_1 \beta_0 \gamma_m^0 + \beta_1 \gamma_m^0 + 2s_1 (\gamma_m^0)^2 + 2 \beta_0 \gamma_m^1 + 4 \gamma_m^0 \gamma_m^1 \right) \\
+ L^3 \left(\frac{2}{3} \beta_0^2 \gamma_m^0 + 2 \beta_0 (\gamma_m^0)^2 + \frac{4}{3} (\gamma_m^0)^3 \right) \right]
\]

\[L = \log \left(\mu^2 / m_H^2 \right)\]
Can broadly observe three regions:

1) At LO $m_j=0$. Must ensure that first bin be inclusive enough for IR cancellations. Large corrections

2) “Bulk”: phase spaces with 3+ partons contribute, NNLO-like calculation

3) “Tail”: phase spaces with 4+ partons contribute, NLO-like calculation
Two-loop amplitudes for $H \rightarrow b\bar{b}g$

Soft-gluon limit: $p_3 \rightarrow 0$ which means $y, z \rightarrow 0$ simultaneously

$$2 \text{Re} \left(M_{H \rightarrow b\bar{b}g}^{(2)} M_{H \rightarrow b\bar{b}g}^{(0)^*} \right) \rightarrow 2 \text{Re} \left(S^{(0)}(y, z) M_{H \rightarrow b\bar{b}}^{(2)} M_{H \rightarrow b\bar{b}}^{(0)^*} \right. $$

$$+ S^{(1)}(y, z) M_{H \rightarrow b\bar{b}}^{(1)} M_{H \rightarrow b\bar{b}}^{(0)^*} $$

$$\left. + S^{(2)}(y, z) M_{H \rightarrow b\bar{b}}^{(0)} M_{H \rightarrow b\bar{b}}^{(0)^*} \right)$$

$y = z = 10^{-10}$

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Known limit</th>
<th>Our result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ^{-4}</td>
<td>81.7702729678</td>
<td>81.7702729678</td>
</tr>
<tr>
<td>ϵ^{-3}</td>
<td>3818.49680411</td>
<td>3818.49680413</td>
</tr>
<tr>
<td>ϵ^{-2}</td>
<td>130763.8079162</td>
<td>130763.8079168</td>
</tr>
<tr>
<td>ϵ^{-1}</td>
<td>3.26338843478 $\cdot 10^6$</td>
<td>3.26338843480 $\cdot 10^6$</td>
</tr>
<tr>
<td>ϵ^0</td>
<td>6.52342650778 $\cdot 10^7$</td>
<td>6.52342650793 $\cdot 10^7$</td>
</tr>
</tbody>
</table>
Two-loop amplitudes for $H \rightarrow b\bar{b}g$

Collinear limit: $t \rightarrow 0$ which means $y \rightarrow 0$ while z is fixed

$$2 \text{Re} \left(\mathcal{M}_{H \rightarrow b\bar{b}g}^{(2)} \mathcal{M}_{H \rightarrow b\bar{b}g}^{(0)*} \right) \rightarrow 2 \text{Re} \left(C^{(0)}(y, z) \mathcal{M}_{H \rightarrow b\bar{b}}^{(2)} \mathcal{M}_{H \rightarrow b\bar{b}}^{(0)*} \right)$$

$$+ C^{(1)}(y, z) \mathcal{M}_{H \rightarrow b\bar{b}}^{(1)} \mathcal{M}_{H \rightarrow b\bar{b}}^{(0)*}$$

$$+ C^{(2)}(y, z) \mathcal{M}_{H \rightarrow b\bar{b}}^{(0)} \mathcal{M}_{H \rightarrow b\bar{b}}^{(0)*}$$

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Known limit</th>
<th>Our result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ^{-4}</td>
<td>283.156234427</td>
<td>283.156234427</td>
</tr>
<tr>
<td>ϵ^{-3}</td>
<td>8122.55721506</td>
<td>8122.55721505</td>
</tr>
<tr>
<td>ϵ^{-2}</td>
<td>170379.942318</td>
<td>170379.942317</td>
</tr>
<tr>
<td>ϵ^{-1}</td>
<td>$2.584146 \cdot 10^6$</td>
<td>$2.584189 \cdot 10^6$</td>
</tr>
<tr>
<td>ϵ^0</td>
<td>$3.09852 \cdot 10^7$</td>
<td>$3.09870 \cdot 10^7$</td>
</tr>
</tbody>
</table>

$y = 10^{-12}$

$z = 0.23$