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The need for accuracy

The Standard Model is the most successful theory in describing the
elementary particles and their fundamental interactions, due to combined
effort from both the magnificent experiments like Tevatron, HERA, LHC etc.

and precise theory predictions, namely perturbative calculations.

Tevatron
the top quark

fundamental laws ∼ 10%

agreement with NLO
theory predictions

LHC
the Higgs boson

fundamental laws ∼ 5%

agreement with NNLO
theory predictions

FCC/ILC
BSM physics?!
more precision!

More precise theory
predictions needed!
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DRELL-YAN
a

l

l̄

✓ One of the standard candle processes

• Large cross section and clean experimental signature - important for
detector calibration and constraining parton distribution functions

✓ Precise predictions for electroweak parameter

• W boson mass, sin2 θeff ...

✓ New physics potential

• Many BSM scenarios with same final states -W ′, Z′, KK modes etc.
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Present status and next goals

Threshold corrections at N3LO [Ahmed, Mahakhud, Rana, Ravindran]
Threshold corrections at N3LO [Li, von Manteuffel, Schabinger, Zhu]
Threshold resummation at N3LL [Catani, Cieri, de Florian, Ferrera, Grazzini]
NNLO mixed QCD-QED corrections [de Florian, Der, Fabre]
Approximated mixed QCD-EW corrections at NNLO [Dittmaier, Huss, Schwinn]
Master integrals for full two-loop virtual [Bonciani, Di Vita, Mastrolia, Schubert]
Master integrals for full two-loop virtual [Heller, von Manteuffel, Schabinger]

Complete N3LO
per mille contributions

Mixed QCD⊗EW
per mille contributions

1. NLO EW effects are large forW mass measurements. Hence, one needs to
include mixed QCD⊗EW corrections while aiming for 10 MeV precision.

2. Because of initial-final interaction in case of EW correction, it becomes more
important in the tail of the distribution (Enhancement by Sudakov logarithms at
large invariant mass of the lepton pair).

3. The appearance of photon induced processes effects the PDFs.
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Goal

Based on whether the hadronic production of the vector boson can be factorized from
the leptonic decay, the mixed QCD⊗EW corrections can be classified into two distinct
categories: the factorizable and non-factorizable contributions.

In this work, we start with the factorizable contribution and consider the
production of a on-shell Z boson, specially the quark initiated channel.

[see also talks by Heller and Fabre]
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Notation

σtot(z) =
∑

i,j∈q,q̄,g,γ

∫
dx1dx2 fi(x1, µF )fj(x2, µF )σij(z, ε, µF )

In the full QCD-EW SM, we have a double expansion of the partonic cross
sections in the electromagnetic and strong coupling constants, α and αs,
respectively:

σij(z) = σ
(0)
ij

∞∑
m,n=0

αm
s αn σ

(m,n)
ij (z)

= σ
(0)
ij

[
σ
(0,0)
ij (z) + αsσ

(1,0)
ij (z) + ασ

(0,1)
ij (z)

+ α2sσ
(2,0)
ij (z) + ααsσ

(1,1)
ij (z) + α2σ

(0,2)
ij (z) + · · ·

]

In this talk, we present the computational details of σ(1,1)
qq̄ (z).
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NNLO contributions

Pure Virtual

×

Real-Virtual
×

× ,

×

×

Double Real
×
×
×

For different vector bosons, the contribution can be organized into four types

a

• QCD⊗QED : γ propagator in the loop / emission of γ

• EW1 : single Z propagator in the loop

• EW2 : singleW propagator in the loop

• EW3 : Contributions withWWZ vertex

Emission of massive boson is infrared finite, hence, is treated as separate process.

gauge invariant and finite : QCD⊗QED, EW1, EW2+EW3
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The generic procedure
d = 4− 2ϵ

• Diagrammatic approach -> QGRAF [Nogueira] to generate diagrams
• FORM [Vermaseren] for algebraic manipulation :

Lorentz, Dirac and Color [Ritbergen, Schellekens, Vermaseren] algebra
• Reverse unitarity : phase-space integrals to loop integrals

δ(k2 −m2) ∼
1
2πi

(
1

k2 −m2 + i0
−

1
k2 −m2 − i0

)
• Decomposition of the dot products to obtain scalar integrals

2l.p
l2(l − p)2

=
l2 − (l − p)2 + p2

l2(l − p)2
=

1
(l − p)2

−
1
l2

+
p2

l2(l − p)2

• Identity relations among scalar integrals : IBPs, LIs & SRs

• Algebraic linear system of equations relating the integrals
LiteRed ⇓ LiteRed
Master integrals (MIs)

• Computation of MIs : Differential eqns.
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The method of differential equations

The integral is a function of d, q2 and m2.
m2

q2 = z

J(1, 1, 1, 0, 1, 0, 1) = N
∫

ddl1
(2π)d

ddl2
(2π)d

1
l21 l

2
2((l1 − l2)2 −m2)(l1 − q)2(l2 − q)2

≡ f(d, q2, m2) ≡ f(d, z)

The idea is to obtain a differential eqn. for the integral w.r.t. z and solve it.
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J1
J2
J3
J4
.
.
.
Jn


=



• • • • · · · •
• • • • · · · •
• • • • · · · •
• • • • · · · •
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
• • • • · · · •
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J2
J3
J4
.
.
.
Jn



dzJ = A(d, z)J
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To solve such a system, it would be best to organize it in such a way that it
diagonalizes, or at least it takes a block-triangular form.
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Let’s consider an example

d

dz

(
J1
J2

)
=

[
c11 c12
c21 c22

] (
J1
J2

)
+

(
R1(ϵ, z)
R2(ϵ, z)

)
,

c11 =
d − 4 + (d − 2)z

2z2
, c12 = −

1

z2
,

c21 =
(d − 4)(−4(1 + 2z)2 + d(1 + 4z + 5z2))

4z2(1 + z)
, c22 =

4 + 14z + 8z2 − d(1 + 3z + 2z2)

2z2(1 + z)
.
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For massive case, the integrals can have, at max, a quadratic pole in ϵ.

Ji =
1
ϵ2
J−2
i +

1
ϵ
J−1
i + J0i + ϵJ 1i + · · ·

Series expansion and compare each order of ϵ!
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Let’s consider an example

d

dz

(
J1
J2

)
=

[
c11 c12
c21 c22

] (
J1
J2
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+

(
R1(ϵ, z)
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c11 =
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4 + 14z + 8z2 − d(1 + 3z + 2z2)
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Each order in ϵ-expansion gives a much simpler form

d

dz

 J
−2
1

J
−2
2

 =

 1
z

− 1
z2

0 1
z

− 1
1+z

 J
−2
1

J
−2
2

 +

 R
−2
1 (z)

R
−2
2 (z)

 ,
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The general form of expansion

d

dz
Jn(z, ϵ) = Cnm(z, ϵ)Jn(z, ϵ) +Rn(z, ϵ)

Expand in ϵ

Jn(z, ϵ) =
∞∑

k=−2
J
(k)
n (z)ϵk

Cn(z, ϵ) =
∞∑
k=0

C(k)
n (z)ϵk

Rn(z, ϵ) =
∞∑

k=−2
R(k)

n (z)ϵk

d

dz
J (k)
n (z) = C(0)

nm(z)J (k)
n (z) +

k+2∑
p=1

C(p)
nm(z)J (k−p)

n (z) +R(k)
n (z)
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Algorithm

• It boils down to solving a system of linear first order diff. eqns.
• First step is to reduce the system to a higher order eqn in a single unknown
• Start with the leading pole (ϵ−2) - find the homogeneous solution and best
uncoupling procedure - solve for the nonhomogeneous part using the method
of variation of constant

• Structure of homogeneous part is same at each order in ϵ-expansion
• Hence the homogeneous solutions and uncoupling procedure are similar for
each order

• Now at each order in ϵ, find the nonhomogeneous parts keeping the uncoupling
structure fixed

• Solve order by order in ϵ using variation of constant

We use

Sigma [Schneider] and HarmonicSums [Ablinger, Blümlein, Schneider]

The results are obtained in terms of HPLs and Cyclotomic HPLs.
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Computational details for QCD⊕QED

[see talk by Fabre]

• Photon being massless, it has same topology as pure QCD.

• The loop and phase-space master integrals are known from Higgs
calculations.

• We have used the method of differential equations to compute them.

• To obtain the finite partonic cross-section, we need to perform
subtraction of collinear singularities through mass factorization.
Thanks to the recent calculation by de Florian et al., the splitting
functions are available in this order. [de Florian, Sborlini, Rodrigo]

• Finally, we cross-check ours with the available results which has been
obtained using Abelianization. [de Florian, Der, Fabre]
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Computing EW1 : virtuala ×z

• The integrals are proportional to (m2
Z)n , hence method of differential equation

can not be applied. Hence, to compute the integrals, we consider production of
a off-shell Z boson. Now we use the variable x = −s/m2

Z to differentiate and
finally take the limit x → −1 to obtain the on-shell solution. [Aglietti, Bonciani]

• There are cross-contributions of the kind
×z

• UV counter-terms :
⊗

×
,

⊗
×

,

⊕
×

⊗ : one-loop Z corrections to quark wave function
⊕ : two-loop mixed QCD-Z corrections to quark wave function

After adding all contributions, we obtain UV finite virtual piece which is still
infrared divergent.
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Computing EW1 : real-virtual
a

×

×

• Method of reverse unitarity

δ(k2 −m2) ∼
1
2πi

(
1

k2 −m2 + i0
−

1
k2 −m2 − i0

)
transform all phase-space integrals to loop integrals and then we can use all
the techniques like IBP identities and method of differential equations.∫

δ(k2)δ((k − p1 − p2)
2 − m2

Z)

l2((l − p1)2 − m2
Z) . . .

∼
∫ 1

l2((l − p1)2 − m2
Z) . . . k2((k − p1 − p2)2 − m2

Z)

• z = m2
Z/s is used as the variable for differential equations.

• The differential equations are then solved using the method described earlier.
The threshold limit (z → 1) of the integrals are used as the boundary values.

• UV counter-terms :
×

×⊗
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Computing EW1 : double-reala ×
×

×

• Similar procedure as real-virtual. However, because of particular color flow, only
mixed channels (s with t/u) contribute.

• On the other hand, Z being massive, it is free of infrared singularities.

Contains elliptic integrals

a

The topology generates a set of three integrals which factorize as {2⊕ 1}. The
homogeneous part was solved in [Aglietti, Bonciani, Grassi, Remiddi].

One can obtain a compact solution in terms of elliptic functions. However, for
numerical evaluation, we anyway need the expansion and hence we solve them by
expanding the differential equations near threshold up to sufficient order.
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Computing EW1 : final

Finally, to obtain the finite partonic cross section for the ’EW1’ type contributions, we
add all the virtual, real-virtual and double-real contributions with appropriate UV
counter-terms. According to KLN theorem, all soft and final state collinear
singularities cancel, leaving only initial state collinear singularities.

The initial state collinear singularities are removed by mass factorization.

Γ(0)
qq × F

(0,1)
Z

We find the absence of ‘QCD⊗EW’ contribution to the splitting function.
In an independent computation, we cross-check it!

The finite cross section is constituted by

ln 2, ζ2, ζ3,Li4(1/2), H[_, z], H[_, _, z], H[_, _, _, z]

with the distributions δ(1− z),
( 1
1−z

)
+
and

( logn(1−z)
1−z

)
+
.
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Computing EW2

We expand mW around mZ

mW = mZ − δm

and then the contributions from EW2 becomes

∆EW 2 ∼ ∆EW 1 + δm∆
(1)
EW 1 + δ2m∆

(2)
EW 1 + . . .

∆
(n)
EW 1 are contributions with same topology as EW1. To improve the

accuracy, this expansion is performed up to sufficient order.
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Computing EW3 : virtuala ×

• In this case also, we consider first off-shell production of Z boson and then
consider the Landau variable x for the parameter in differential equations.

s

m2 = −
(1− x)2

x

The solution space is spanned by following alphabet{
1
x
,

1
1− x

,
1

1+ x
,

1
1− x+ x2

,
x

1− x+ x2

}
.

Finally, the on-shell solution is obtained by taking the limit x → (−1)1/3 .

New constants! During this procedure, we obtain constants of the type
H[__, (−1)1/3] up to weight 4 in terms of [Henn, Smirnov, Smirnov].

H[__, (−1)1/3] ⇒ H[__, 1] ⇒ Reduction to Basis

• For theWWZ vertex, we consider the background field gauge. The reason is
that in this case, the vertex and UV counter-terms (two point functions), are
separately UV finite.
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Computing EW3 : real-virtual
a

×

×

• Similar procedure as EW1, except that in this case square root letter appears in
the alphabet along with the square root of unity. It implies that when we try to
rationalize one, the other one takes quartic form.

• We use a smart partial transformation of variable, where needed, to deal with
this situation.

Computing EW3 : double-reala ×
×

×
Same as earlier.
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Computing EW3 : final

Combining again all the relevant contributions, along with the mass factorization
term, we finally obtain a UV divergent contribution. Only once we combine two
contributions EW2 and EW3, we obtain UV finite-ness.

The constants appear in the final result

ln 2, ζ2, ζ3,Li4(1/2),GI[r2],GI[0, r2],GI[0, 1, r4]

GI[r2] = −
π

3
, GI[0, r2] = −Cl2

(
π

3

)
with H[__, z] up to weight 3 with square root letters.
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Other minor points

Treatment of γ5 : As all the γ5 appear in a single quark line, we can safely
use the naive anti-commutation rule.

UV counter terms : The UV counter terms get contributions from two-point
functions with massive propagator insertion which we have obtained up to
required accuracy.
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Results!

Mixed QCD⊗EW corrections For the process qq̄ → Z

✓ QCD⊗QED
δ(1− z), Di , H[__, z] with alphabet {−1, 0, 1}.

✓ EW1 (Contributions from Z interchange)
δ(1− z), Di , H[__, z] with square root alphabet and elliptic logs.

✓ EW2+EW3 (Contributions fromW interchange andWWZ vertex)
δ(1− z), Di , H[__, z] with square root alphabet and elliptic logs.
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Summarizing

• The mixed NNLO QCD-EW contributions to Drell-Yan production are much sought
for. We make an advancement by obtaining analytic results for on-shell Z boson
production in quark initiated channel.

• We have computed analytically 12 different matrix element squared purely at
two-loop level. Additionally there are one-loop contributions. Combining them
to obtain a finite partonic cross section is non-trivial and acts as a strong check
on our calculation.

• The method of reverse unitarity allows us to use the techniques (IBP, DE) of loop
calculation for the phase-space integrals.

• The solutions are obtained mostly in terms of harmonic poly-logarithms (HPL)
and special constants (MZV and cyclotomic HPL at 1). The contributions from
elliptic functions are obtained as expansion near threshold.

• We also perform a parallel independent computation to cross check.

Thank you for your attention!
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