Intersection Theory and Higgs physics

Hjalte Frellesvig

Dipartimento di Fisica e Astronomia “Galileo Galilei”, University of Padova.

September 10, 2019
Introduction

Hjalte Frellesvig,†,1 Federico Gasparotto,†,2 Stefano Laporta,*,6 Manoj K. Mandal,*,6 Pierpaolo Mastrolia,*,6,2 Luca Mattiazzi,*,6 and Sebastian Mizera*,6

†Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
2INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy
*Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
3Department of Physics & Astronomy, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
E-mail: hjalte.frellesvig@pd.infn.it, federico.gasparotto@pd.infn.it, stefano.laporta@pd.infn.it, manoj.k.mandal@pd.infn.it, pierpaolo.mastrolia@pd.infn.it, luca.mattiazzi@pd.infn.it, smizer@pitp.ca

Vector Space of Feynman Integrals and Multivariate Intersection Numbers

Hjalte Frellesvig,†,1,6 Federico Gasparotto,†,2,6 Stefano Laporta,*,6 Manoj K. Mandal,*,6,2 Pierpaolo Mastrolia,*,6,2 Luca Mattiazzi,*,6,2 and Sebastian Mizera*,6,2

1Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
2INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy
3Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
4Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada

INTEGRALS AND DIFFERENTIAL FORMS

In this work, we focus on integrals of the hypergeometric type.

\[
I = \int_c w(x) \, dx ,
\]
For state-of-the art two-loop scattering amplitude calculations
Feynman diagrams $\rightarrow \mathcal{O}(10000)$ Feynman integrals

Linear relations bring this down to $\mathcal{O}(100)$ *master integrals*
For state-of-the art two-loop scattering amplitude calculations Feynman diagrams $\rightarrow \mathcal{O}(10000)$ Feynman integrals

Linear relations bring this down to $\mathcal{O}(100)$ *master integrals*

Linear relations may be derived using IBP (integration by part) identities

$$\int \frac{d^d k}{\pi^{d/2}} \frac{\partial}{\partial k^\mu} \frac{q^\mu N(k)}{D_{1}^{a_1}(k) \cdots D_{P}^{a_P}(k)} = 0$$

Systematic by Laporta’s algorithm \Rightarrow Solve a huge linear system.
For state-of-the art two-loop scattering amplitude calculations
Feynman diagrams $\rightarrow \mathcal{O}(10000)$ Feynman integrals

Linear relations bring this down to $\mathcal{O}(100)$ *master integrals*

Linear relations may be derived using IBP (integration by part) identities

$$\int \frac{d^d k}{\pi^{d/2}} \frac{\partial}{\partial k^\mu} q^\mu N(k) \frac{D_{a_1}^{a_1}(k) \cdots D_{a_P}^{a_P}(k)}{D_{b_1}^{b_1}(k) \cdots D_{b_Q}^{b_Q}(k)} = 0$$

Systematic by Laporta’s algorithm \Rightarrow Solve a huge linear system.

The linear relations are often informally referred to as IBPs as well.
The linear relations form a vector space

\[I = \sum_{i \in \text{masters}} c_i I_i \]

Subsectors are sub-spaces.
The linear relations form a vector space

\[I = \sum_{i \in \text{masters}} c_i I_i \]

Subsectors are sub-spaces.

Not all vector spaces are inner product spaces

\[\langle v \rangle = \sum_i \langle vw_j \rangle (C^{-1})_{ji} \langle v_i \rangle \quad \text{with} \quad C_{ij} = \langle v_i w_j \rangle \]

\[= \sum_i c_i \langle v_i \rangle \]
The linear relations form a vector space

\[I = \sum_{i \in \text{masters}} c_i I_i \]

Subsectors are sub-spaces.

Not all vector spaces are *inner product spaces*

\[\langle v \mid = \sum_i \langle vw_j \rangle (C^{-1})_{ji} \langle v_i \mid \quad \text{with} \quad C_{ij} = \langle v_i w_j \rangle \]

\[= \sum_i c_i \langle v_i \mid \]

If only there were a way to define an inner product for Feynman integrals...
The loop-by-loop version of Baikov representation can often decrease

\[I = \int \frac{d^d k_1}{\pi^{d/2}} \cdots \int \frac{d^d k_L}{\pi^{d/2}} \frac{N(k)}{D_1^{a_1}(k) \cdots D_P^{a_P}(k)} = K \int_C d^n x \frac{B^\gamma(x)N(x)}{x_1^{a_1} \cdots x_P^{a_P}} \]

The \(x_i \) are Baikov variables, \(B \) is the Baikov Polynomial, \(C = \{ B > 0 \} \).

\[n = L(L+1)/2 + EL \quad \gamma = (d - E - L - 1)/2 \]

Baikov representation

\[I = \int \frac{d^d k_1}{\pi^{d/2}} \cdots \int \frac{d^d k_L}{\pi^{d/2}} \frac{N(k)}{D^{a_1}_1(k) \cdots D^{a_P}_P(k)} = K \int C d^n x \frac{\mathcal{B}^\gamma(x) N(x)}{x^{a_1}_1 \cdots x^{a_P}_P} \]

The \(x_i \) are Baikov variables, \(\mathcal{B} \) is the Baikov Polynomial, \(C = \{ \mathcal{B} > 0 \} \).

\[n = \frac{L(L+1)}{2} + EL \quad \gamma = \frac{(d-E-L-1)}{2} \]

The loop-by-loop version of Baikov representation can often decrease \(n \)

\[I = \tilde{K} \int_C d^n x \left(\prod_{j=1}^{2L-1} \mathcal{B}_j^{\gamma_j}(x) \right) \frac{N(x)}{x^{a_1}_1 \cdots x^{a_P}_P} \]

Baikov representation

\[I = \int \frac{d^d k_1}{\pi^{d/2}} \cdots \int \frac{d^d k_L}{\pi^{d/2}} \frac{N(k)}{D_1^{a_1}(k) \cdots D_P^{a_P}(k)} = K \int_C d^n x \frac{B^\gamma(x)N(x)}{x_1^{a_1} \cdots x_P^{a_P}} \]

The \(x_i \) are Baikov variables, \(B \) is the Baikov Polynomial, \(C = \{ B > 0 \} \).

\[n = L(L+1)/2 + EL \quad \gamma = (d-E-L-1)/2 \]

The loop-by-loop version of Baikov representation can often decrease \(n \)

\[I = \tilde{K} \int_C d^n x \left(\prod_{j=1}^{2L-1} B^\gamma_j(x) \right) \frac{N(x)}{x_1^{a_1} \cdots x_P^{a_P}} \]

Baikov representation is suitable for *generalized unitarity cuts*

\[\int d x \rightarrow \oint d x. \text{ Preserves linear relations.} \]

\[I = \int_C d^n x \frac{B^\gamma(x)N(x)}{x_1^{a_1} \cdots x_P^{a_P}} = \int_C u \phi \]

\[u = B^\gamma \text{ is a multivariate function in } \{x\} \]

\[\phi = \frac{N(x)}{x_1^{a_1} \cdots x_P^{a_P}} d x_1 \wedge \cdots \wedge d x_n \text{ is a form} \]
Theory

\[I = \int_C d^n x \frac{B^\gamma(x) N(x)}{x_1^{a_1} \cdots x_P^{a_P}} = \int_C u \phi = \langle \phi | C \rangle \omega \]

\(u = B^\gamma \) is a multivariate function in \(\{ x \} \)

\(\phi = \frac{N(x)}{x_1^{a_1} \cdots x_P^{a_P}} dx_1 \wedge \cdots \wedge dx_n \) is a form

\(\omega = d \log(u) \) is the twist

\(\langle \phi | C \rangle \omega \) is a pairing of a twisted cycle (C) and a twisted co-cycle (\(\phi \)) (equivalence classes of contours and integrands respectively)

\(\text{dim of the set of } \phi \text{s, is the number of master integrals.} \)
\[I = \int_{\mathcal{C}} d^n x \frac{B^\gamma(x)N(x)}{x_1^{a_1} \cdots x_P^{a_P}} = \int_{\mathcal{C}} u\phi = \langle \phi | \mathcal{C} \rangle_\omega \]

\[u = B^\gamma \text{ is a multivariate function in } \{x\} \]
\[\phi = \frac{N(x)}{x_1^{a_1} \cdots x_P^{a_P}} dx_1 \wedge \cdots \wedge dx_n \text{ is a form} \]
\[\omega = d \log(u) \text{ is the twist} \]

\[\langle \phi | \mathcal{C} \rangle_\omega \text{ is a pairing of a twisted cycle } (\mathcal{C}) \text{ and a twisted co-cycle } (\phi) \]

(dim of the set of \(\phi\)s, is the number of master integrals.

Lee Pomeransky criterion:

\(\text{nr. of master integrals} = \text{nr. of solutions to } \omega = 0\)

The *intersection number* $\langle \phi | \xi \rangle$ is a pairing of a twisted co-cycle ϕ with a *dual* twisted co-cycle ξ.

Lives up to all criteria for being a scalar product.
The *intersection number* $\langle \phi | \xi \rangle$ is a pairing of a twisted co-cycle ϕ with a *dual* twisted co-cycle ξ.

Lives up to all criteria for being a scalar product.

When there is one integration variable z (ϕ and ξ are one-forms)

$$\langle \phi | \xi \rangle_\omega = \sum_{p \in \mathcal{P}} \text{Res}_{z=p}(\psi_p \xi) \quad (d + \omega)\psi_p = \phi$$

\mathcal{P} is the set of poles of ω.

References:

The intersection number $\langle \phi | \xi \rangle$ is a pairing of a twisted co-cycle ϕ with a dual twisted co-cycle ξ.

Lives up to all criteria for being a scalar product.

When there is one integration variable z (ϕ and ξ are one-forms)

$$\langle \phi | \xi \rangle_\omega = \sum_{p \in \mathcal{P}} \text{Res}_{z=p} (\psi_p \xi) \quad (d + \omega) \psi_p = \phi$$

\mathcal{P} is the set of poles of ω.

References:

HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera, *Vector Space of Feynman Integrals and Multivariate Intersection Numbers*.
The *intersection number* $\langle \phi | \xi \rangle$ is a pairing of a twisted co-cycle ϕ with a *dual* twisted co-cycle ξ.

Lives up to all criteria for being a scalar product.

When there is one integration variable z (ϕ and ξ are one-forms)

$$\langle \phi | \xi \rangle \omega = \sum_{p \in \mathcal{P}} \text{Res}_{z=p} (\psi_p \xi) \ (d + \omega) \psi_p = \phi$$

\mathcal{P} is the set of poles of ω.

References:

HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera, *Vector Space of Feynman Integrals and Multivariate Intersection Numbers*.
Summary of theory:

\[I = \sum_{i \in \text{masters}} c_i I_i \iff \langle \phi | C \rangle = \sum_i c_i \langle \phi_i | C \rangle \]

with \(I = \int_C u \phi \). \(u \) is multivariate function, \(\phi \) is a form (rational pre-factor), \(\omega = \text{d log}(u) \).
Summary of theory:

\[I = \sum_{i \in \text{masters}} c_i I_i \iff \langle \phi | C \rangle = \sum_i c_i \langle \phi_i | C \rangle \]

with \(I = \int_C u\phi. \) \(u \) is multivariate function, \(\phi \) is a form (rational pre-factor), \(\omega = d \log(u) \).

\[c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad \text{with} \quad C_{ij} = \langle \phi_i | \xi_j \rangle \]
Summary of theory:

\[I = \sum_{i \in \text{masters}} c_i I_i \iff \langle \phi | C \rangle = \sum_i c_i \langle \phi_i | C \rangle \]

with \(I = \int_C u \phi \). \(u \) is multivariate function, \(\phi \) is a form (rational pre-factor), \(\omega = d \log(u) \).

\[c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad \text{with} \quad C_{ij} = \langle \phi_i | \xi_j \rangle \]

For one-forms:

\[\langle \phi | \xi \rangle = \sum_{p \in \mathcal{P}} \text{Res}_{z=p} (\psi_p \xi) \quad (d + \omega) \psi_p = \phi \]

solve with series ansatz
Example (double box)

Massless double box:

\[I = \int d^8 x \frac{uN(x)}{x_1^{a_1} \cdots x_7^{a_1}} \rightarrow I_{7\times\text{cut}} = \int u_{7\times\text{cut}} \phi \quad u_{7\times\text{cut}} = z^{d/2-3}(z+s)^{2-d/2}(z-t)^{d-5} \]

\[\omega = \left(\frac{d-6}{2z} + \frac{4-d}{2(z+s)} + \frac{d-5}{z-t} \right) dz \Rightarrow \nu = 2 \]
Example (double box)

Massless double box:

\[
I = \int d^8 x \frac{uN(x)}{x_1^a \ldots x_7^a} \quad \Rightarrow \quad I_{7\times\text{cut}} = \int u_{7\times\text{cut}} \phi \\
\omega = \left(\frac{d-6}{2z} + \frac{4-d}{2(z+s)} + \frac{d-5}{z-t} \right) dz \quad \Rightarrow \quad \nu = 2
\]

We want to reduce

\[
I_{1111111;1} = c_1 I_{1111111;0} + c_2 I_{1111111;1} + \text{lower}
\]

\[
\phi = z^2 \, dz, \quad \phi_1 = 1 \, dz, \quad \phi_2 = z \, dz, \quad \xi_1 = \left(\frac{1}{z} - \frac{1}{z+s} \right) \, dz, \quad \xi_2 = \left(\frac{1}{z+s} - \frac{1}{z-t} \right) \, dz,
\]

\[
c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad \text{with} \quad C_{ij} = \langle \phi_i | \xi_j \rangle
\]
Example (double box)

\[c_i = \langle \phi|\xi_j \rangle (C^{-1})_{ji} \quad \text{with} \quad C_{ij} = \langle \phi_i|\xi_j \rangle \]

\[\phi = z^2 \, dz, \quad \phi_1 = 1 \, dz, \quad \phi_2 = z \, dz, \quad \xi_1 = \left(\frac{1}{z} - \frac{1}{z+s} \right) \, dz, \quad \xi_2 = \left(\frac{1}{z+s} - \frac{1}{z-t} \right) \, dz, \]

We need 6 intersection numbers: \[\{ \langle \phi|\xi_1 \rangle, \langle \phi|\xi_2 \rangle, \langle \phi_1|\xi_1 \rangle, \langle \phi_1|\xi_2 \rangle, \langle \phi_2|\xi_1 \rangle, \langle \phi_2|\xi_2 \rangle \} \]
\[c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad \text{with} \quad C_{ij} = \langle \phi_i | \xi_j \rangle \]

\(\phi = z^2 \, dz, \quad \phi_1 = 1 \, dz, \quad \phi_2 = z \, dz, \quad \xi_1 = \left(\frac{1}{z} - \frac{1}{z+s} \right) \, dz, \quad \xi_2 = \left(\frac{1}{z+s} - \frac{1}{z-t} \right) \, dz, \)

We need 6 intersection numbers: \(\{ \langle \phi | \xi_1 \rangle, \langle \phi | \xi_2 \rangle, \langle \phi_1 | \xi_1 \rangle, \langle \phi_1 | \xi_2 \rangle, \langle \phi_2 | \xi_1 \rangle, \langle \phi_2 | \xi_2 \rangle \} \)

Using \(\langle \phi | \xi \rangle = \sum_{p \in \mathcal{P}} \text{Res}_{z=p} (\psi_p \xi) \) with \((d + \omega) \psi_p = \phi \), we get

\[\langle \phi | \xi_1 \rangle = \frac{s(4(d-5)t^2 - 3(d-4)(3d-14)s^2 - 4(d-5)(2d-9)st)}{4(d-5)(d-4)(d-3)}, \]

\[\langle \phi | \xi_2 \rangle = \frac{s(s+t)(3d-4)(3d-14)s + 2(d-6)(d-5)t)}{4(d-5)(d-4)(d-3)}, \]

\[\langle \phi_1 | \xi_1 \rangle = -\frac{s}{d-5}, \quad \langle \phi_1 | \xi_2 \rangle = \frac{s+t}{d-5}, \]

\[\langle \phi_2 | \xi_1 \rangle = \frac{s((3d-14)s + 2(d-5)t)}{2(d-5)(d-4)}, \quad \langle \phi_2 | \xi_2 \rangle = \frac{-(3d-14)s(s+t)}{2(d-5)(d-4)}. \]
\[c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad \text{with} \quad C_{ij} = \langle \phi_i | \xi_j \rangle \]

\[\phi = z^2 \, dz, \quad \phi_1 = 1 \, dz, \quad \phi_2 = z \, dz, \quad \xi_1 = \left(\frac{1}{z} - \frac{1}{z+s} \right) \, dz, \quad \xi_2 = \left(\frac{1}{z+s} - \frac{1}{z-t} \right) \, dz, \]

We need 6 intersection numbers: \(\left\{ \langle \phi | \xi_1 \rangle, \langle \phi | \xi_2 \rangle, \langle \phi_1 | \xi_1 \rangle, \langle \phi_1 | \xi_2 \rangle, \langle \phi_2 | \xi_1 \rangle, \langle \phi_2 | \xi_2 \rangle \right\} \)

Using \(\langle \phi | \xi \rangle = \sum_{p \in P} \text{Res}_{z=p}(\psi_p \xi) \) with \((d + \omega)\psi_p = \phi\), we get

\[\langle \phi | \xi_1 \rangle = \frac{s(4(d-5)t^2 - 3(d-4)(3d-14)s^2 - 4(d-5)(2d-9)st)}{4(d-5)(d-4)(d-3)}, \]

\[\langle \phi | \xi_2 \rangle = \frac{s(s+t)(3d-4)(3d-14)s + 2(d-6)(d-5)t}{4(d-5)(d-4)(d-3)}, \]

\[\langle \phi_1 | \xi_1 \rangle = -\frac{s}{d-5}, \quad \langle \phi_1 | \xi_2 \rangle = \frac{s+t}{d-5}, \]

\[\langle \phi_2 | \xi_1 \rangle = \frac{s((3d-14)s + 2(d-5)t)}{2(d-5)(d-4)}, \quad \langle \phi_2 | \xi_2 \rangle = -\frac{(3d-14)s(s+t)}{2(d-5)(d-4)}. \]

\[I_{1111111; -2} = c_0 I_{1111111; 0} + c_1 I_{1111111; -1} + \text{lower} \quad c_0 = \frac{(d-4)st}{2(d-3)}, \quad c_1 = \frac{2t - 3(d-4)s}{2(d-3)}, \]

in agreement with FIRE
Further cases

We did $O(30)$ examples in the paper arXiv:1901.11510
Further cases

We did $O(30)$ examples in the paper arXiv:1901.11510
Contributions to NLO Higgs+jet production

$H + j$ “Family A”:
Further cases

Contributions to NLO Higgs+jet production

\[H + j \text{ “Family A”:} \]

\[
 u_{7 \times \text{cut}} = z^{d-5} (z^2 + sz + m_t^2) \frac{4-d}{2} \left((m_H^2 - s) z^2 + 2(m_H^2 - s) stz + st \left(4m_t^2 (m_H^2 - s - t) + st \right) \right)^{\frac{d-5}{2}}
\]

There are four master integrals.
Further cases

Contributions to NLO Higgs+jet production

\[H + j \ “Family A”: \]

\[
u_{7x\text{cut}} = z^{d-5}(z^2 + sz + m_t^2 s) \frac{4-d}{2} \left((m_H^2 - s)^2 z^2 + 2(m_H^2 - s) stz + st(4m_t^2 (m_H^2 - s - t) + st) \right)^{\frac{d-5}{2}}\]

There are four master integrals.

\[I_{11111111;0} = c_1 I_{11111111;0} + c_2 I_{12111111;0} + c_3 I_{11112111;0} + c_4 I_{11111112;0} + \text{lower} \]

The intersection procedure gives cs in agreement with Kira.
Further cases

Contributions to NLO Higgs+jet production

\[u_{7 \times \text{cut}} = z^{d-5} (z^2 + sz + m_t^2 s)^{\frac{4-d}{2}} \left((m_H^2 - s)^2 z^2 + 2(m_H^2 - s) stz + st \left(4m_t^2 (m_H^2 - s - t) + st \right) \right)^{\frac{d-5}{2}} \]

There are four master integrals.

\[I_{1111111; -1} = c_1 I_{1111111; 0} + c_2 I_{1211111; 0} + c_3 I_{1111211; 0} + c_4 I_{1111112; 0} + \text{lower} \]

The intersection procedure gives \(c_s \) in agreement with Kira.

It also works for e.g. \(H+j \) fam. F

see arXiv:1907.13156 for fam. F.
Does it only work for maximal cuts?

\[\int_C u^\hat\varphi \, dn \, z = \sum_i c_i I_i \]

with

\[c_i = \langle \varphi | \xi_j \rangle (C - 1)_{ji} C_{ij} \]

but now

\[\langle \varphi | \xi \rangle \]

is a multivariate intersection number.
Does it only work for maximal cuts? NO!
Does it only work for maximal cuts? NO!

\[I = \int_C u \hat{\phi} d^n z = \sum_i c_i I_i \quad \text{with} \quad c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad C_{ij} = \langle \phi_i | \xi_j \rangle \]

but now \(\langle \phi | \xi \rangle \) is a multivariate intersection number

multivariate

Does it only work for maximal cuts? NO!

\[I = \int_C u \phi \, d^n z = \sum_i c_i I_i \quad \text{with} \quad c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad C_{ij} = \langle \phi_i | \xi_j \rangle \]

but now \(\langle \phi | \xi \rangle \) is a \textit{multivariate intersection number}

\[n \langle \phi^{(n)} | \xi^{(n)} \rangle = - \sum_{p \in \mathcal{P}_n} \text{Res}_{z_n = p} \left(n - 1 \langle \phi^{(n)} | h_i^{(n-1)} \rangle \psi_i^{(n)} \right) , \]

\[\left(\delta_{ij} \partial z_n - \hat{\Omega}^{(n)}_{ij} \right) \psi_j^{(n)} = \hat{\xi}_i^{(n)} , \]

\[\hat{\Omega}^{(n)}_{ij} = - \left(C_{(n-1)}^{-1} \right)_{ik} n - 1 \langle e_k^{(n-1)} | (\partial z_n - \hat{\omega}_n) h_j^{(n-1)} \rangle , \]

\[\hat{\xi}_i^{(n)} = \left(C_{(n-1)}^{-1} \right)_{ij} n - 1 \langle e_j^{(n-1)} | \xi^{(n)} \rangle , \]

\[\left(C_{(n-1)} \right)_{ij} \equiv n - 1 \langle e_i^{(n-1)} | h_j^{(n-1)} \rangle . \]
We have done the full reduction of

\[
\nu = 3 \phi = (x_2 x_1) - \frac{1}{2} \phi_1 = (x_1 x_2 x_3 x_4) - \frac{1}{2} \phi_2 = (x_1 x_3) - \frac{1}{2} \phi_3 = (x_2 x_4)
\]

and

\[
c_i = \langle \phi | \xi_j \rangle \left(C^{-1} \right)_{ji}
\]
We have done the full reduction of

\[u(x) = \left((st - sx_4 - tx_3)^2 - 2tx_1(s(t+2x_3-x_2-x_4)+tx_3) \right. \]
\[+ s^2 x_2^2 + t^2 x_1^2 - 2sx_2\left(t(s-x_3)+x_4(s+2t)\right) \right)^{d-5} \]

In particular

\[\nu = 3 \quad \phi = (x_1^2 x_2^2 x_3 x_4)^{-1} \quad \phi_1 = (x_1 x_2 x_3 x_4)^{-1} \quad \phi_2 = (x_1 x_3)^{-1} \quad \phi_3 = (x_2 x_4)^{-1} \]

\[c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \]

with

The results are in agreement with FIRE.
\[I = \int_C u \phi \quad \rightarrow \quad I = \sum_i c_i I_i \quad \text{with} \quad c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad C_{ij} = \langle \phi_i | \xi_j \rangle \]

Can find integral relations without the use of IBPs.
\[I = \int_C u\phi \quad \rightarrow \quad I = \sum_i c_i I_i \quad \text{with} \quad c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad C_{ij} = \langle \phi_i | \xi_j \rangle \]

Can find integral relations without the use of IBPs.

“IBPs without IBPs”
\[I = \int_C u\phi \quad \rightarrow \quad I = \sum_i c_i I_i \quad \text{with} \quad c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad C_{ij} = \langle \phi_i | \xi_j \rangle \]

Can find integral relations without the use of IBPs.

“IBPs without IBPs”

Future work:

- Full understanding of the multivariate case
Perspectives

\[I = \int_C u\phi \quad \rightarrow \quad I = \sum_i c_i I_i \quad \text{with} \quad c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad C_{ij} = \langle \phi_i | \xi_j \rangle \]

Can find integral relations without the use of IBPs.

“IBPs without IBPs”

Future work:

- Full understanding of the multivariate case
- Classify hypergeometric functions (See Manoj’ talk)
- Clarify connection to co-action (see talks of J. Matthew and R. Britto)
- Make an optimized algorithm for sub-sectors
- Combine with rational reconstruction

Thank you for listening!

H. Frellesvig
\[I = \int_C \! u \phi \quad \rightarrow \quad I = \sum_i c_i I_i \quad \text{with} \quad c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad C_{ij} = \langle \phi_i | \xi_j \rangle \]

Can find integral relations without the use of IBPs.

“IBPs without IBPs”

Future work:

- Full understanding of the multivariate case
- Classify hypergeometric functions (See Manoj’ talk)
- Clarify connection to co-action (see talks of J. Matthew and R. Britto)
- Make an optimized algorithm for sub-sectors
- Combine with rational reconstruction
- Make an extremely fast code
- ...
\[I = \int_C u\phi \rightarrow I = \sum_i c_i I_i \quad \text{with} \quad c_i = \langle \phi | \xi_j \rangle (C^{-1})_{ji} \quad C_{ij} = \langle \phi_i | \xi_j \rangle \]

Can find integral relations without the use of IBPs.

"IBPs without IBPs"

Future work:

- Full understanding of the multivariate case
- Classify hypergeometric functions (See Manoj’ talk)
- Clarify connection to co-action (see talks of J. Matthew and R. Britto)
- Make an optimized algorithm for sub-sectors
- Combine with rational reconstruction
- Make an extremely fast code
- ...

Thank you for listening!

Hjalte Frellesvig