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ABSTRACT: We claborate on the recent idea of a direct decomposition of Feyuman integrals
onto a basis of master integrals on maximal ents using intersection numbers. We begin by
showing an application of the method to the derivation of contiguity relations for special

functions, such us the Euler beta function, the Gauss 2F hypergeometric function, and
the Appell Fy function. Then, we apply the new method to decompose Feynman integrals

ples that have.

whose maximal cuts admit 1-form integral representations, including ex
from two to an arbitrary number of loops, and/or from zero to an arbitrary number of
legs. Direct constructions of differential equations and dimensional recurrence relations for
R

by-intersections i cases where the maximal cuts admit  2-form integral representation,

nman integrals are also discussed. We present two novel approaches to decomposition-

with  view towards the extension of the formalism to n-form representations. The decom-
position formulne computed through the use of intersection numbers are directly verified
to agree with the ones obtained using integration-by-parts identitics
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Vector Space of Feynman Integrals and Multivariate Intersection Numbers
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INTRODUCTION

Seattering samplitudes encode crucial nformation about
collision phenomena in our wniverse, from the small-
est to the largest scales. Within the perturbative field-
theretical approach, the evaluation of multi-loop Feyu
man integrals is a mandatory operation for the determi.
nation of scattering amplitudes and related quantities.
Lincar relations among Feyuman integals can be ex-
ploited to simplify the evaluation of scattering amplicudes:
they can be used both for docomposing scattering ampl:
tudes s terms of  bass of functions, refered to s master

als i dimensional regularization malkes use of

integration-by-parts identitics (IBPs) [1], whick re found
by solving linear systems of equations [2] (sce [3, 4] and
references therin for reviews). Algebraic manipulations
i these cases e very demanding, and effcient algorithms
forsolving large-size systems of inear cquations hve been
rocontly dovised, by making use of inite field arithmetic
and rational functions reconstruction [5-7]

I 8], it was shown that intersection numbers 9] of it
ferential forms can be employed 1o define (what amounts
t0)  scaar prostuct on & vector space of Feynman integrals
in'a given family. Using this approach, projecting any
‘multi-laop integtal onto  basis of MIs i conceptually no
il rom decomposing o gevrc wctor o b

vector space. Within this new approach, relations
o Fogmma e oo b oo kg
generation of intermediate, avsiliary expressions which

are meeded when applying Gauss climination, as in the
standard IBP-based approaches.

I the iuitial studies, |8, 10], this novel decomposition
method was applied to the realm of special mathematical
fonctionsfllng i he l f Laurkcela foctons,as
well a5 to Feyman infegrals on maximal cuts, i.c. with
on-shell internal lines, mostly admitting a one-fold inte-

sral representation. Those results concerned a pastiol
constrietion of Feyuman integral relations, mainly lim-
ited to the determination of the cocfficients of the MIs
with the same amber of denominators as the integral to
decompase, which was achicved by means of intersection
numbers for univariate forms.

In this paper, we make an importan step further, and
address the complete integral reduction, for the detcrmi.
nation of l cocficients, including those associated 1o
Mis corresponding to sub-graphs. In the current. work,
we disciss the one-loop massless four-point integral
 paradigmatic case, although the algorithm has boon
successfully applied to several other cases at one- and
two-loop.

Generic Feynmon integrals admit mlti-fold integral

20]. I this etter, we present ts refined implementation

ud application to Feynman integeals, which provide a
major step towards le applicabilit of our sirat
egy for the reduction to Mis. The results of this work
Show potential for further applications ranging from par
ticle physics, through condensed matter and statistical
mechanics, to gravitational-wave physics, while making
hew connections to mathematics.

INTEGRALS AND DIFFERENTIAL FORMS

i this work, we focns on fntegals of the hypergeometric
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For state-of-the art two-loop scattering amplitude calculations
Feynman diagrams — ((10000) Feynman integrals

Linear relations bring this down to O(100) master integrals
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For state-of-the art two-loop scattering amplitude calculations
Feynman diagrams — ((10000) Feynman integrals

Linear relations bring this down to O(100) master integrals

Linear relations may be derived using IBP (integration by part) identities

/d% 0 "N (k)

472 9kn DI (k) - D (k)

Systematic by Laporta’s algorithm = Solve a huge linear system.
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For state-of-the art two-loop scattering amplitude calculations
Feynman diagrams — ((10000) Feynman integrals

Linear relations bring this down to O(100) master integrals

Linear relations may be derived using IBP (integration by part) identities

/ d'% 9 "N (k)

472 9kn DI (k) - D (k)

Systematic by Laporta’s algorithm = Solve a huge linear system.

The linear relations are often informally referred to as IBPs as well.
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The linear relations form a vector space

I = Z CiIi

1Emasters

Subsectors are sub-spaces.
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The linear relations form a vector space

I = Z CiIi

1Emasters

Subsectors are sub-spaces.

Not all vector spaces are inner product spaces

(o] = D (wwg) (C71)ful with Gy = (vyuy)
= Z ci (vi
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The linear relations form a vector space

I = Z CiIi

1Emasters

Subsectors are sub-spaces.
Not all vector spaces are inner product spaces

with Cij = <viw]~>

(o] = 3 fowy) (C1), o

i
=2 il
i
If only there were a way to define an inner product
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Baikov representation

iy ddky, N (k) K d" BW(x N(x)
= 7|—d/2 ﬂ_d/Q D?l(k’) . DaP - (ZP

The z; are Baikov variables, B is the Baikov Polynomial, C = {B > 0}.
= L(L+1)/2+EL v =(d—E—L-1)/2

P. Baikov: Nucl. Instrum. Meth.A 389 (1997) 347-349, [hep-ph/9611449]
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Baikov representation

iy ddky, N (k) K d" BW(x N(m)
= 7|—d/2 ﬂ_d/Q D?l(k’) . DaP - (ZP

The z; are Baikov variables, B is the Baikov Polynomial, C = {B > 0}.
n = L(L+1)/2+EL v =(d—E—L-1)/2

P. Baikov: Nucl. Instrum. Meth.A 389 (1997) 347-349, [hep-ph/9611449]

The loop-by-loop version of Baikov representation can often decrease n

2L 18” (x)> N(z)
1=K d" a

1 ap
Tp

HF and C. Papadopoulos, JHEP 04 (2017) 083, [arXiv:1701.07356]
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Baikov representation

:/ddkl /ddkL N(k) _ K/d" BW(L.E N(m)

rd/2 xd/2 D;ll(k,),“Dt}l)P P

The z; are Baikov variables, B is the Baikov Polynomial, C = {B > 0}.
n = L(L+1)/2+EL v=(d—E—-L-1)/2
P. Baikov: Nucl. Instrum. Meth.A 389 (1997) 347-349, [hep-ph/9611449]

The loop-by-loop version of Baikov representation can often decrease n
o (B4 B @) N@)
I = K/d"x b
c zit - zp

HF and C. Papadopoulos, JHEP 04 (2017) 083, [arXiv:1701.07356]

Baikov representation is suitable for generalized unitarity cuts
Jdz — §dx. Preserve linear relations.
J. Bosma, M. Sggaard, Y. Zhang, JHEP 08 (2017) 051, [arXiv:1704.04255]
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C Ly -

u = B7 is a multivariate function in {z}
o= %dml/\~-/\dzn is a form
b TR
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y
I = /d” B /QS m
C 371'

u = B7 is a multivariate function in {z}

¢ = %dml/\~-/\dzn is a form
b TR

w = dlog(u) is the twist

(¢|C]., is a pairing of a twisted cycle (C) and a twisted co-cycle (¢)
(equivalence classes of contours and integrands respectively)

dim of the set of ¢s, is the number of master integrals.
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C Ly -

u = B7 is a multivariate function in {z}

qﬁz%dml/\---/\dzn is a form
Tt T

w = dlog(u) is the twist

(¢|C]., is a pairing of a twisted cycle (C) and a twisted co-cycle (¢)
(equivalence classes of contours and integrands respectively)

dim of the set of ¢s, is the number of master integrals.

Lee Pomeransky criterion:
nr. of master integrals = nr. of solutions to w =0
R. Lee and A. Pomeransky, JHEP 11 (2013) 165, [arXiv:1308.6676].
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The intersection number ($|€) is a pairing of a twisted co-cycle ¢
with a dual twisted co-cycle €.

Lives up to all criteria for being a scalar product.
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The intersection number ($|€) is a pairing of a twisted co-cycle ¢
with a dual twisted co-cycle €.

Lives up to all criteria for being a scalar product.
When there is one integration variable z (¢ and ¢ are one-forms)

(91€)w Z Res.—p(1p€) (d+whpp =9

peP
P is the set of poles of w.
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The intersection number ($|€) is a pairing of a twisted co-cycle ¢
with a dual twisted co-cycle €.

Lives up to all criteria for being a scalar product.

When there is one integration variable z (¢ and ¢ are one-forms)

(91€)w Z Res.—p(1p€) (d+whpp =9

peP

P is the set of poles of w.

References:
K. Cho and K. Matsumoto, Intersection theory for twisted cohomologies and twisted Riemann's period relations,
agoya Math. J. 139 (1995) 67-86

K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) no. 4 873-893
S. Mizera, Scattering Amplitudes from Intersection Theory, Phys. Rev. Lett. 120 (2018) no. 14 141602
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The intersection number ($|€) is a pairing of a twisted co-cycle ¢
with a dual twisted co-cycle €.

Lives up to all criteria for being a scalar product.

When there is one integration variable z (¢ and ¢ are one-forms)

(91€)w Z Res.—p(1p€) (d+whpp =9

peP
P is the set of poles of w.

References:

K. Cho and K. Matsumoto, Intersection theory for twisted cohomologies and twisted Riemann’s period relations,
Nagoya Math. J. 139 (1995) 67-86

K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) no. 4 873-893
S. Mizera, Scattering Amplitudes from Intersection Theory, Phys. Rev. Lett. 120 (2018) no. 14 141602

P. Mastrolia and S. Mizera, Feynman Integrals and Intersection Theory, JHEP 1902 (2019) 139

HF, F. Gasparotto, S. Laporta, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,

Decomposition of Feynman integrals on 'the maximal cut by intersection numbers JHEP 1905 (2019) 153
HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,

Vector Space of Feynman Integrals and Multivariate Intersection Numbers.

(S

S

UNIVERSITA
DEGLI STUDI
DI PADOVA

”nm i

% )

7

MARIE CURIE

H. Frellesvig Intersection Theory September 11, 2019



Summary of theory:

I= Z cl; & <¢’|C]:Zci<¢i|c]
iEmasters

2
with T = fc u¢. u is multivariate function,
¢ is a form (rational pre-factor), w = dlog(u).
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Summary of theory:

I= Z cl; & <¢’|C]:Zci<¢i|c]

iEmasters %

with T = fc u¢. u is multivariate function,
¢ is a form (rational pre-factor), w = dlog(u).

ci = (9§ (C™ ) with Cij = (#il&;)
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Summary of theory:

I= Z cl; & <¢’|C]:Zci<¢i|c]

iEmasters %

with T = fc u¢. u is multivariate function,
¢ is a form (rational pre-factor), w = dlog(u).

ci = (9§ (C™ ) with Cij = (#il&;)

For one-forms:

(61€) = Res.—, (1) (d+w), =¢

peP
solve with series ansatz

S N 0
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Example (double box)

P, P
Massless double box:
P P,
ulN (x
I = /dsx ﬁ - I7><cut = /U7><cut¢ UTxcut = Zd/2_3(2+3)2_d/2(zft)d_5
1 7
(d -6 4—d d— 5)
w= + + dz = v=2
2z 2(z+s) z—t
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Example (double box)

P2 P3
Massless double box:
P P,
ulN (x _ _ _
I'= /dsx ﬁ = Irxcut = /u7><cut¢ UTxcut = 2/2 3(2+3)2 d/Q(th)d °
1T

<d_6+ 4_d+d_5)d N 9
w = z V=
2z 2(z+s) z—t

We want to reduce

IT1111111;—2 = c1l1111111;0 + c2d1111111;—1 + lower

o=22dz, g1=1dz, do=2dz, &= (i-)d, ©=(5-)d,

UNIVERSITA
DEGLI STUDI
DI PADOVA
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Example (double box)

ci = (B&)(C 1) with Cij = ($il€;5)

b=22dz, é1=1dz, ¢o=2dz, §1:(§—z}r3)dz, §2:(z}rs—zit)dz,

We need 6 intersection numbers: { (9[61), (8]62), (11€1), (@1162). (6261). (dlé2) }

7,
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Example (double box)

ci = (Pl&NC ) with  Cij = ($il¢y)

b=22dz, ¢1=1dz, ¢o=z2dz, £ = (;—Z+S)dz €0 = (Z+S “)dz
We need 6 intersection numbers: { (9[61), (8]62), (11€1), (@1162). (6261). (dlé2) }

Using (¢|€) = Zpep Res.=p(¢p€) with (d +w)ip = ¢, we get

5(4(d—5)t2 —3(d—4)(3d—14)s> —4(d—5)(2d—9)st
(pl€1) = (4(d=5) (4(d)(5>(d 4;<d 3)( )( ) )

_ s(s+t)(3(d—4)(3d—14)s+2(d—6)(d— 5)t)
(dl€2) = == 4(d—5)(d— 4§(d 3)

(p1lé1) = =% » (¢1€2) = L,

(aler) = SETAAEAEDN | ($al€2) = %‘w

225 a
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Example (double box)

ci = (Pl&NC ) with  Cij = ($il¢y)

b=22dz, ¢1=1dz, ¢o=z2dz, £ = (;—Z+S)dz €0 = (Z+s “)dz
We need 6 intersection numbers: { (9[61), (8]62), (11€1), (@1162). (6261). (dlé2) }

Using (¢|€) = Zpep Res.=p(¢p€) with (d +w)ip = ¢, we get

5(4(d—5)t2 —3(d—4)(3d—14)s> —4(d—5)(2d—9)st
(pl€1) = (4(d=5) (4(d)(5>(d 4;((1 3)( )( ) )

s(s+0) (3(d—4) (3d—1)s+2(d—6)(d=5)1)

(Bl€2) = 1(d-5)(d—4)(d—3)
(p1lé1) = =% » (¢1€2) = L,
- d— —(3d—
(galgr) = SUBL N0 ($al€2) = %
(d—4)st 2t — 3(d—4)s
I .o =col . I . | = 7 == —C -
1111111;—2 = coli111111;0 + erlii11111;—1 + lower co 5(d-3) c1 N

in agreement with FIRE

H. Frellesvig Intersection Theory September 11, 2019 10 / 15



Further cases

We did O(30) examples in the paper arXiv:1901.11510

272 .
75,82 UNIVERSITA
128 pEGLI STUDI
VS
&/ DIPADOVA
AAS

September 11, 2019 11

ACTIONS

H. Frellesvig

Intersection Theory



Further cases

We did 0(30) examples in the paper arXiv:1901.11510
\_/ \__/
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Further cases

Contributions to NLO Higgs+jet production

H+j “Family A”:
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Further cases

Contributions to NLO Higgs+jet production

-
’/
H + j "Family A":
4—d
UT xcut = Zd_5(22+sz+mfs)T

d—5
((m,flfs)QZ2 + 2(m12{75)stz + st(4mf(mflfsft)+st)) 2
There are four master integrals.
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Further cases

Contributions to NLO Higgs+jet production

H + 35 "Family A":

a—d a—5
U7 et = zd_5(z2+sz+mfs) 2 ((mflfs)2z2 + 2(m12{75)stz + st(4mf(mflfsft)+st)) 2

There are four master integrals.
I1111111;—-1 = c1l1111111;0 + c2l1211111;0 + e31111211;0 + cal1111112;0 + lower

The intersection procedure gives cs in agreement with Kira.
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Further cases
Contributions to NLO Higgs+jet production
”
’/

H+j “Family A":
d—>5

4—d o2
2 ((mflfs)2z2 + 2(m12{75)stz + st(4mf(mflfsft)+st)) 2

-5 2 2
Urxet = 27 (27 +sz+mys)
There are four master integrals.
I1111111;—-1 = c1l1111111;0 + c2l1211111;0 + e31111211;0 + cal1111112;0 + lower

The intersection procedure gives cs in agreement with Kira.

It also works for e.g. H+j fam. F j:K (6 —4)

see arXiv:1907.13156 for fam. F.
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multivariate

Does it only work for maximal cuts?

PR,
H. Frellesvig
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multivariate

Does it only work for maximal cuts? NO!

PR,
H. Frellesvig
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multivariate
Does it only work for maximal cuts? NO!
I= /(juq@d”z = Zcili with ci = (PlENC™ N Cij = (dil&5)

but now (¢|€) is a multivariate intersection number

K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) no. 4 873-893
S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, [arXiv:1906.02099]

HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Vector Space of Feynman Integrals and Multivariate Intersection Numbers, [arXiv:1907.02000]

CERR IO a
) UNIVERSITA
DEGLI STUDI
DI PADOVA

SERS)
CIERS

4l 1)
N\

7,

H. Frellesvig Intersection Theory September 11, 2019



multivariate

Does it only work for maximal cuts? NO!

I= /C wpd's =Y eili  with e = (06)(C D Cyj = (6il€))

but now (¢|€) is a multivariate intersection number

K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) no. 4 873-893

S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, [arXiv:1906.02099]
HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera

Vector Space of Feynman Integrals and Multivariate Intersection I\iumbers [arXiv:1907.02000]
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Future work:

e  Full understanding of the multivariate case
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Future work:

Full understanding of the multivariate case
Classify hypergeometric functions (See Manoj’ talk)
Clarify connection to co-action (see talks of J. Matthew and R. Britto)

Make an optimized algorithm for sub-sectors

Combine with rational reconstruction
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Future work:

Full understanding of the multivariate case
Classify hypergeometric functions (See Manoj’ talk)
Clarify connection to co-action (see talks of J. Matthew and R. Britto)

Make an optimized algorithm for sub-sectors

Combine with rational reconstruction

e  Make an extremely fast code
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“IBPs without IBPs"

Future work:

Full understanding of the multivariate case
Classify hypergeometric functions (See Manoj’ talk)
Clarify connection to co-action (see talks of J. Matthew and R. Britto)

Make an optimized algorithm for sub-sectors

Combine with rational reconstruction

e  Make an extremely fast code

Thank you for listening!

Hjalte Frellesvig
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