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Abstract: We elaborate on the recent idea of a direct decomposition of Feynman integrals

onto a basis of master integrals on maximal cuts using intersection numbers. We begin by

showing an application of the method to the derivation of contiguity relations for special

functions, such as the Euler beta function, the Gauss 2F1 hypergeometric function, and

the Appell F1 function. Then, we apply the new method to decompose Feynman integrals

whose maximal cuts admit 1-form integral representations, including examples that have

from two to an arbitrary number of loops, and/or from zero to an arbitrary number of

legs. Direct constructions of differential equations and dimensional recurrence relations for

Feynman integrals are also discussed. We present two novel approaches to decomposition-

by-intersections in cases where the maximal cuts admit a 2-form integral representation,

with a view towards the extension of the formalism to n-form representations. The decom-

position formulae computed through the use of intersection numbers are directly verified

to agree with the ones obtained using integration-by-parts identities.
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Feynman integrals obey linear relations governed by intersection numbers, which act as scalar
products between vector spaces. We present a general algorithm for constructing multivariate
intersection numbers relevant to Feynman integrals, and show for the first time how they can be
used to solve the problem of integral reduction to a basis of master integrals by projections, and to
directly derive functional equations fulfilled by the latter. We apply it to the derivation of contiguity
relations for special functions admitting multi-fold integral representations, and to the decomposition
of a few Feynman integrals at one- and two-loops, as first steps towards potential applications to
generic multi-loop integrals.

INTRODUCTION

Scattering amplitudes encode crucial information about
collision phenomena in our universe, from the small-
est to the largest scales. Within the perturbative field-
theoretical approach, the evaluation of multi-loop Feyn-
man integrals is a mandatory operation for the determi-
nation of scattering amplitudes and related quantities.
Linear relations among Feynman integrals can be ex-

ploited to simplify the evaluation of scattering amplitudes:
they can be used both for decomposing scattering ampli-
tudes in terms of a basis of functions, referred to as master
integrals (MIs), and for the evaluation of the latter. The
standard procedure used to derive relations among Feyn-
man integrals in dimensional regularization makes use of
integration-by-parts identities (IBPs) [1], which are found
by solving linear systems of equations [2] (see [3, 4] and
references therein for reviews). Algebraic manipulations
in these cases are very demanding, and efficient algorithms
for solving large-size systems of linear equations have been
recently devised, by making use of finite field arithmetic
and rational functions reconstruction [5–7].

In [8], it was shown that intersection numbers [9] of dif-
ferential forms can be employed to define (what amounts
to) a scalar product on a vector space of Feynman integrals
in a given family. Using this approach, projecting any
multi-loop integral onto a basis of MIs is conceptually no
different from decomposing a generic vector into a basis
of a vector space. Within this new approach, relations
among Feynman integrals can be derived avoiding the
generation of intermediate, auxiliary expressions which
are needed when applying Gauss elimination, as in the
standard IBP-based approaches.
In the initial studies, [8, 10], this novel decomposition

method was applied to the realm of special mathematical
functions falling in the class of Lauricella functions, as
well as to Feynman integrals on maximal cuts, i.e. with
on-shell internal lines, mostly admitting a one-fold inte-

gral representation. Those results concerned a partial
construction of Feynman integral relations, mainly lim-
ited to the determination of the coefficients of the MIs
with the same number of denominators as the integral to
decompose, which was achieved by means of intersection
numbers for univariate forms.

In this paper, we make an important step further, and
address the complete integral reduction, for the determi-
nation of all coefficients, including those associated to
MIs corresponding to sub-graphs. In the current work,
we discuss the one-loop massless four-point integral as
a paradigmatic case, although the algorithm has been
successfully applied to several other cases at one- and
two-loop.
Generic Feynman integrals admit multi-fold integral

representations. Their complete decomposition requires
the evaluation of intersection numbers for multivariate
rational differential forms. Intersection numbers of mul-
tivariate forms have been previously studied in [11–19].
Recently, a new recursive algorithm was introduced in
[20]. In this letter, we present its refined implementation
and application to Feynman integrals, which provide a
major step towards large-scale applicability of our strat-
egy for the reduction to MIs. The results of this work
show potential for further applications ranging from par-
ticle physics, through condensed matter and statistical
mechanics, to gravitational-wave physics, while making
new connections to mathematics.

INTEGRALS AND DIFFERENTIAL FORMS

In this work, we focus on integrals of the hypergeometric
type,

I =

∫

C
u(z)ϕ(z) , (1)
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Introduction

For state-of-the art two-loop scattering amplitude calculations
Feynman diagrams → O(10000) Feynman integrals

Linear relations bring this down to O(100) master integrals

Linear relations may be derived using IBP (integration by part) identities

∫
ddk

πd/2
∂

∂kµ
qµN(k)

Da1
1 (k) · · ·DaP

P (k)
= 0

Systematic by Laporta’s algorithm ⇒ Solve a huge linear system.

The linear relations are often informally referred to as IBPs as well.
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Theory

The linear relations form a vector space

I =
∑

i∈masters

ciIi

Subsectors are sub-spaces.

Not all vector spaces are inner product spaces

〈v| =
∑

i

〈vwj〉
(
C−1

)
ji
〈vi| with Cij = 〈viwj〉

=
∑

i

ci 〈vi|

If only there were a way to define an inner product
for Feynman integrals...
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Theory

Baikov representation

I =

∫
ddk1

πd/2
· · ·
∫

ddkL

πd/2
N(k)

Da11 (k) · · ·DaPP (k)
= K

∫
C
dnx

Bγ(x)N(x)

xa11 · · ·x
aP
P

The xi are Baikov variables, B is the Baikov Polynomial, C = {B > 0}.
n = L(L+1)/2+EL γ = (d−E−L−1)/2

P. Baikov: Nucl. Instrum. Meth.A 389 (1997) 347–349, [hep-ph/9611449]

The loop-by-loop version of Baikov representation can often decrease n

I = K̃

∫
C
dñx

(∏2L−1
j=1 B

γj
j (x)

)
N(x)

xa11 · · ·x
aP
P

HF and C. Papadopoulos, JHEP 04 (2017) 083, [arXiv:1701.07356]

Baikov representation is suitable for generalized unitarity cuts∫
dx→

∮
dx. Preserve linear relations.

J. Bosma, M. Søgaard, Y. Zhang, JHEP 08 (2017) 051, [arXiv:1704.04255]
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Theory

I =

∫

C
dnx
Bγ(x)N(x)

xa11 · · ·x
aP
P

=

∫

C
uφ

= 〈φ|C]ω

u = Bγ is a multivariate function in {x}

φ = N(x)

x
a1
1 ···x

aP
P

dx1 ∧ · · · ∧ dxn is a form

ω = d log(u) is the twist

〈φ|C]ω is a pairing of a twisted cycle (C) and a twisted co-cycle (φ)
(equivalence classes of contours and integrands respectively)

dim of the set of φs, is the number of master integrals.

Lee Pomeransky criterion:
nr. of master integrals = nr. of solutions to ω = 0

R. Lee and A. Pomeransky, JHEP 11 (2013) 165, [arXiv:1308.6676].
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Theory

The intersection number 〈φ|ξ〉 is a pairing of a twisted co-cycle φ
with a dual twisted co-cycle ξ.

Lives up to all criteria for being a scalar product.

When there is one integration variable z (φ and ξ are one-forms)

〈φ|ξ〉ω =
∑

p∈P
Resz=p(ψpξ) (d + ω)ψp = φ

P is the set of poles of ω.

References:
K. Cho and K. Matsumoto, Intersection theory for twisted cohomologies and twisted Riemann’s period relations,

Nagoya Math. J. 139 (1995) 67-86

K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) no. 4 873-893
S. Mizera, Scattering Amplitudes from Intersection Theory, Phys. Rev. Lett. 120 (2018) no. 14 141602

P. Mastrolia and S. Mizera, Feynman Integrals and Intersection Theory, JHEP 1902 (2019) 139

HF, F. Gasparotto, S. Laporta, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Decomposition of Feynman integrals on the maximal cut by intersection numbers, JHEP 1905 (2019) 153

HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Vector Space of Feynman Integrals and Multivariate Intersection Numbers.
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Theory

Summary of theory:

I =
∑

i∈masters

ciIi ⇔ 〈φ|C] =
∑

i

ci〈φi|C]

with I =
∫
C uφ. u is multivariate function,

φ is a form (rational pre-factor), ω = d log(u).

ci = 〈φ|ξj〉(C−1)ji with Cij = 〈φi|ξj〉

For one-forms:

〈φ|ξ〉 =
∑

p∈P
Resz=p(ψpξ) (d + ω)ψp = φ

solve with series ansatz
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Example (double box)

Massless double box:

p

p p

p

2

1 4

3

I =

∫
d8x

uN(x)

xa11 · · ·x
a1
7

→ I7×cut =

∫
u7×cut φ u7×cut = zd/2−3(z+s)2−d/2(z−t)d−5

ω =

(
d− 6

2z
+

4− d
2(z+s)

+
d− 5

z−t

)
dz ⇒ ν = 2

We want to reduce

I1111111;−2 = c1I1111111;0 + c2I1111111;−1 + lower

φ = z2 dz , φ1 = 1dz , φ2 = z dz , ξ1 =
(

1
z
− 1
z+s

)
dz , ξ2 =

(
1
z+s
− 1
z−t

)
dz ,

ci = 〈φ|ξj〉(C−1)ji with Cij = 〈φi|ξj〉
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Example (double box)

ci = 〈φ|ξj〉(C−1)ji with Cij = 〈φi|ξj〉

φ = z2 dz , φ1 = 1dz , φ2 = z dz , ξ1 =
(

1
z
− 1
z+s

)
dz , ξ2 =

(
1
z+s
− 1
z−t

)
dz ,

We need 6 intersection numbers:
{
〈φ|ξ1〉, 〈φ|ξ2〉, 〈φ1|ξ1〉, 〈φ1|ξ2〉, 〈φ2|ξ1〉, 〈φ2|ξ2〉

}

Using 〈φ|ξ〉 =
∑
p∈P Resz=p(ψpξ) with (d + ω)ψp = φ , we get

〈φ|ξ1〉 = s(4(d−5)t2−3(d−4)(3d−14)s2−4(d−5)(2d−9)st)
4(d−5)(d−4)(d−3)

,

〈φ|ξ2〉 = s(s+t)(3(d−4)(3d−14)s+2(d−6)(d−5)t)
4(d−5)(d−4)(d−3)

,

〈φ1|ξ1〉 = −s
d−5

, 〈φ1|ξ2〉 = s+t
d−5

,

〈φ2|ξ1〉 = s((3d−14)s+2(d−5)t)
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Further cases

We did O(30) examples in the paper arXiv:1901.11510
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Further cases

Contributions to NLO Higgs+jet production

H + j “Family A”:

u7×cut = z
d−5

(z
2
+sz+m

2
ts)

4−d
2

(
(m

2
H−s)

2
z
2
+ 2(m

2
H−s)stz + st

(
4m

2
t (m

2
H−s−t)+st

))d−5
2

There are four master integrals.

I1111111;−1 = c1I1111111;0 + c2I1211111;0 + c3I1111211;0 + c4I1111112;0 + lower

The intersection procedure gives cs in agreement with Kira.

It also works for e.g. H+j fam. F (6→ 4)

see arXiv:1907.13156 for fam. F.
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multivariate

Does it only work for maximal cuts?

NO!

I =

∫
C
uφ̂dnz =

∑
i

ciIi with ci = 〈φ|ξj〉(C−1)ji Cij = 〈φi|ξj〉

but now 〈φ|ξ〉 is a multivariate intersection number

K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) no. 4 873-893

S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, [arXiv:1906.02099]

HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Vector Space of Feynman Integrals and Multivariate Intersection Numbers, [arXiv:1907.02000]

n〈φ(n)|ξ(n)〉 = −
∑
p∈Pn

Res
zn=p

(
n−1〈φ(n)|h(n−1)

i 〉ψ(n)
i

)
,(

δij ∂zn− Ω̂
(n)
ij

)
ψ
(n)
j = ξ̂

(n)
i ,

Ω̂
(n)
ij = −

(
C−1

(n−1)

)
ik n−1〈e(n−1)

k |(∂zn− ω̂n)h
(n−1)
j 〉 ,

ξ
(n)
i =

(
C−1

(n−1)

)
ij n−1〈e(n−1)

j |ξ(n)〉 ,(
C(n−1)

)
ij
≡ n−1〈e(n−1)

i |h(n−1)
j 〉 .
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multivariate

We have done the full reduction of

In particular

= c1 + c2 + c3

u(x) =
(
(st−sx4−tx3)2 − 2tx1(s(t+2x3−x2−x4)+tx3)

+ s2x22 + t2x21 − 2sx2(t(s−x3)+x4(s+2t))
) d−5

2 .

ν = 3 φ = (x21x
2
2x3x4)

−1 φ1 = (x1x2x3x4)
−1 φ2 = (x1x3)

−1 φ3 = (x2x4)
−1

ci = 〈φ|ξj〉(C−1)ji with Cij = 〈φi|ξj〉

The results are in agreement with FIRE
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Perspectives

I =

∫
C
uφ → I =

∑
i

ciIi with ci = 〈φ|ξj〉(C−1)ji Cij = 〈φi|ξj〉

Can find integral relations without the use of IBPs.

“IBPs without IBPs”

Future work:

• Full understanding of the multivariate case

• Classify hypergeometric functions (See Manoj’ talk)

• Clarify connection to co-action (see talks of J. Matthew and R. Britto)

• Make an optimized algorithm for sub-sectors

• Combine with rational reconstruction

• Make an extremely fast code

• · · ·

Thank you for listening!

Hjalte Frellesvig
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