Quark and Gluon Jet functions at 3-loops in QCD

Prasanna K. Dhani

Istituto Nazionale di Fisica Nucleare, Firenze

RADCOR 2019

Avignon, September 9, 2019

arXiv: 1805.02637 (Phys.Rev. D98 (2018) no.9, 094016) In collaboration with V. Ravindran & P. Banerjee

Plan

- *Definition
- *Contribution in predicting several observables
- *Available results in the literature
- *DIS soft plus jet function and its relation to SCET jet function
- *Our result & Summary

Definition of Jet Function

- * The parton jet function measures the probability that a parton field produces a jet of particles with momentum p from the vacuum.
- * Mathematically, it is given by the vacuum matrix element of two gluon fields

Gluon field in the light-cone gauge $(n.\mathcal{A} = 0)$

$$\int d^dx \, e^{ipx} \langle 0|\mathcal{A}^a_\mu(x)\mathcal{A}^b_\nu(0)|0\rangle = \sum_X (2\pi)^d \delta^{(d)}(p - p_X) \langle 0|\mathcal{A}^a_\mu(0)|X\rangle \langle X|\mathcal{A}^b_\nu(0)|0\rangle$$

$$\equiv g_s^2 \theta(p^0) \delta^{ab} \left(-g_{\mu\nu} + \frac{n_\mu p_\nu + p_\mu n_\nu}{n.p}\right) J^g(p^2)$$

Gluon jet function

Definition

* The gluon field in the light-cone gauge is related to the field in a general gauge given by

$$\mathcal{A}^{\mu}(x) = \mathcal{A}^{a\mu}(x)t_a = W^{\dagger}(x)\left[iD^{\mu}W(x)\right]$$

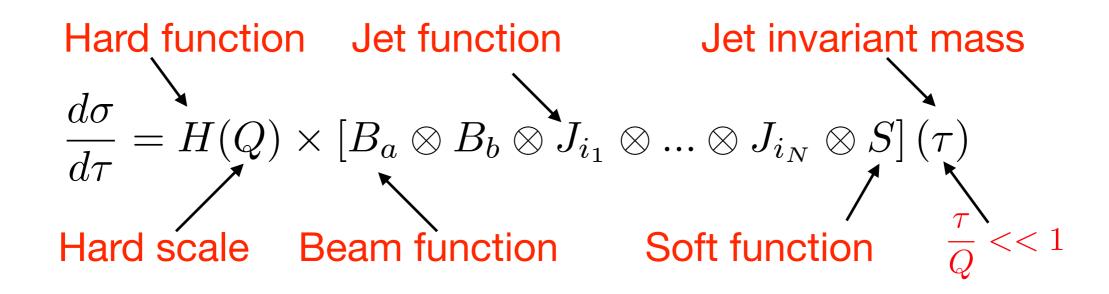
Gluon field in a general gauge

Where light-like (n.n = 0) Wilson line given by

$$W(x) = \mathbf{P} \exp \left(ig_s \int_{-\infty}^{0} ds \, n. A(x+sn) \right)$$
Path ordering

Definition

* Xsection differential probing jet invariant mass takes the factorised form [Bauer et al. (arXiv: 0005275, 0011336, 0107001,0109045,0202088), Beneke et al. (0206152)]



* This factorisation is at LO in au/Q and to all orders in $lpha_s$

$$A(\tau) \otimes B(\tau) \equiv \int d\tau' A(\tau - \tau') B(\tau')$$

Application

- * A universal ingredient in SCET framework involving final state jets.
- * Hence it appears in any jet process at hadron as well as e^+e^- colliders.
- * Inclusive observables with soft-gluon resummation
 - *Jet invariant mass *Thrust distribution *C-parameter

[Catani et al. (Nucl.Phys. B407 (1993) 3-42), Chien et al. (1005.1644), Becher et al. (0803.0342), Abbate et al. (1006.3080, 1204.5746), Hoang et al. (1411.6633, 1501.04111)]

- * Above mentioned observables are used for precise determination of QCD coupling from e^+e^- data.
- * Another motivation: a major component of N-jettiness subtraction method. [Gaunt et al. (1505.04794), Boughezal et al. (1504.02131)]

Known Results

- *One-loop and two-loop quark jet functions are known for some time.

 [Bauer et al. (0312109), Bosch et al. (0402094), Becher et al. (0603140)]
- * Similarly, gluon jet function is also known up to two-loop order.

 [Becher et al. (0911.0681, 1008.1936)]
- *The result of three-loop quark jet function has appeared more recently. [Bruser et al. (1804.09722)]
- *All these results have been obtained through direct computation from formal SCET definition.

Goal

*QCD result

*Extraction: Relating Soft+Jet function of DIS to SCET Jet function.

- *Quark jet function: New independent calculation (Checked with the recent result from direct computation).
- *Gluon jet function: New result from our work.

Usefulness

*The three-loop results contribute to the resummation for observables probing the invariant mass of final state jets at N3LL accuracy.

* The perspective of extending N-jettiness formalism, which has been applied successfully to several NNLO processes with final state jets to N3LO.

Why DIS?

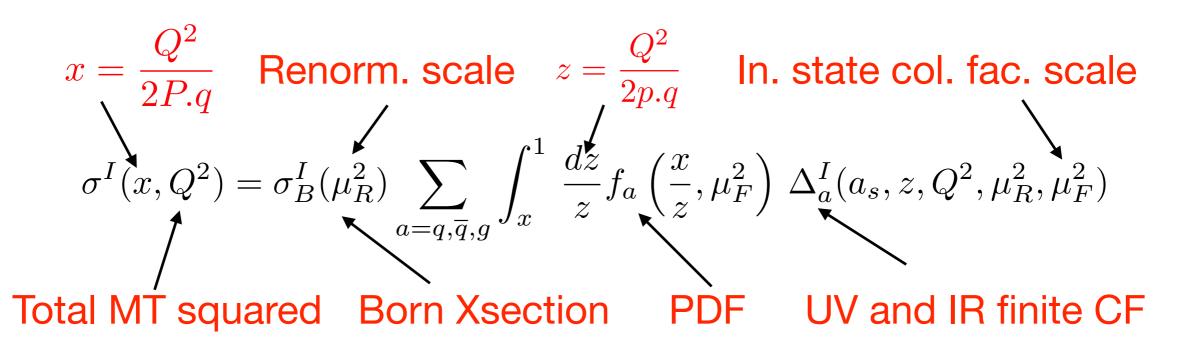
*This is the simplest hadronic process consisting of only one jet i.e. one jet function.

*Due to the above reason, it is relatively easy to compare between QCD and SCET factorisation for this process.

*Theoretical predictions up to three-loop are known which constitute main input for our work. [Vermaseren et al. (0504242), Soar et al. (0912.0369)]

Inclusive Xsection

*Inclusive Xsection for the scattering of a lepton with a hadron in DIS is given by



Inclusive Xsection

*UV renormalised and IR safe coefficient function can be factored in the following way:

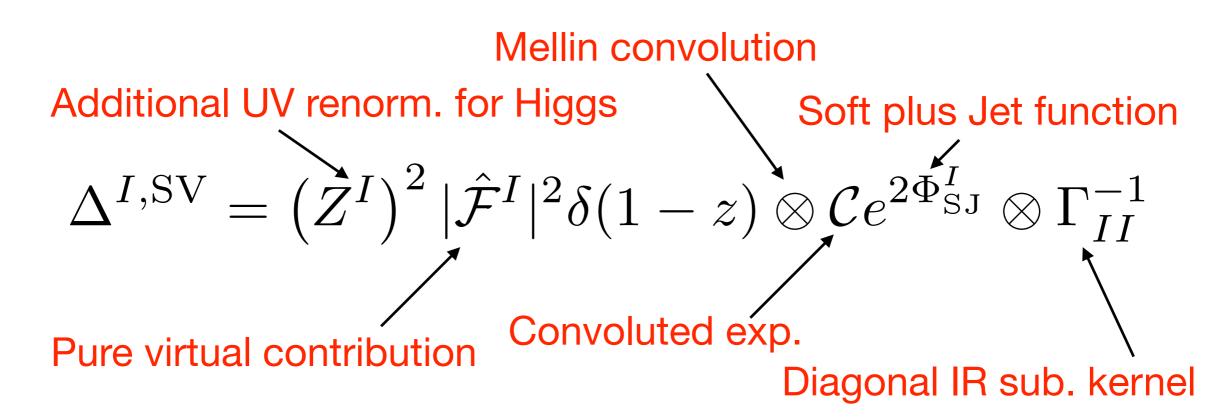
Remaining hard part
$$\Delta_a^I(a_s,z,Q^2,\mu_F^2,\mu_R^2) = \Delta_a^{I,\mathrm{hard}}(a_s,z,Q^2,\mu_F^2,\mu_R^2) + \Delta^{I,\mathrm{SV}}(a_s,z,Q^2,\mu_F^2,\mu_R^2)$$

Soft+Virtual (Contributions coming from soft gluons)

$$\delta(1-z)$$
 & $\mathcal{D}_i(z) = \left[\frac{\log^i(1-z)}{1-z}\right]_+$

Soft plus Virtual Xsection

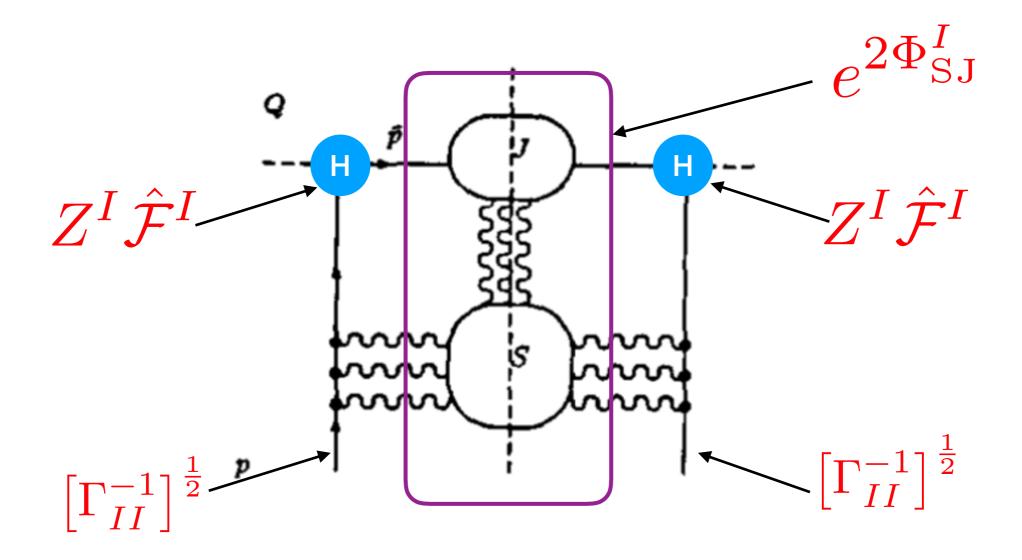
*SV part of the coefficient function can be shown to factorise in the following way: [Ravindran (0512249, 0603041)]



Soft plus Virtual Xsection

[Catani et al. (1989)]

* The previous slide can be seen pictorially as



UV Renormalisation Constant

*It satisfies following RGE

$$\mu_R^2 \frac{d}{d\mu_R^2} \log Z^I \left(\hat{a}_s, \mu_R^2, \mu^2, \epsilon \right) = \sum_{i=1}^{\infty} a_s^i \left(\mu_R^2 \right) \gamma_{i-1}^I$$

UV anomalous dimension

*For Higgs effective coupling, it is known to all orders in QCD \(\beta \)—function. [Spiridonov]

*In QCD, β —function is known up to five-loops.

IR Kernels

*Obeys following RGE

$$\mu_F^2 \frac{d}{d\mu_F^2} \Gamma\left(z, \mu_F^2, \epsilon\right) = \frac{1}{2} P\left(z, \mu_F^2\right) \otimes \Gamma\left(z, \mu_F^2, \epsilon\right)$$

DGLAP splitting functions

*Complete result available up to three-loop in literature.

[Moch, Vermaseren and Vogt (0403192, 0404111)]

*Partial result at four-loops. [Davies et al. (1610.07477), Moch et al. (1707.08315)]

Form Factor

[Sudakov, Mueller, Collins, Sen]

Finite

*It obeys Sudakov equation given by

$$Q^{2} \frac{d}{dQ^{2}} \log \hat{\mathcal{F}}_{I} = \frac{1}{2} \left[K^{I} \left(\hat{a}_{s}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon \right) + G^{I} \left(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \epsilon \right) \right]$$

Poles in regularisation parameter

*RG invariance implies

THIS invariance implies
$$\mu_R^2 \frac{d}{d\mu_P^2} K^I \left(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, \epsilon \right) = -\mu_R^2 \frac{d}{d\mu_P^2} G^I \left(\hat{a}_s, \frac{Q^2}{\mu_P^2}, \frac{\mu_R^2}{\mu^2}, \epsilon \right) \equiv -A^I \left(a_s \left(\mu_R^2 \right) \right)$$

Soft plus Jet Function

*Soft plus Jet function satisfy the following Sudakov-type diff. equation similar to FF.

$$Q^{2} \frac{d}{dQ^{2}} \Phi_{\mathrm{SJ}}^{I} = \frac{1}{2} \left[\bar{K}^{I}(\hat{a}_{s}, \frac{\mu_{R}^{2}}{\mu^{2}}, z, \epsilon) + \bar{G}_{\mathrm{SJ}}^{I}(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, z, \epsilon) \right]$$

Poles in regularisation parameter

Solution

[Ravindran (0512249, 0603041)]

*The solution is found to be

Spherical factor:
$$\exp\left[\frac{\epsilon}{2} \left(\gamma_E - \ln 4\pi\right)\right]$$

$$\Phi_{\mathrm{SJ}}^{I} = \sum_{i=1}^{\infty} \hat{a}_s^i S_{\epsilon}^i \left(\frac{Q^2(1-z)}{\mu^2}\right)^{i\frac{\epsilon}{2}} \frac{i\epsilon}{2(1-z)} \hat{\phi}_{\mathrm{SJ}}^{I,(i)}(\epsilon)$$

where
$$\hat{\phi}_{\mathrm{SJ}}^{I,(i)}(\epsilon) = \frac{1}{i\epsilon} \left[\bar{K}^{I,(i)}(\epsilon) + \bar{G}_{\mathrm{SJ}}^{I,(i)}(\epsilon) \right]$$

$$\bar{K}^{I} = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left(\frac{\mu_{R}^{2}}{\mu^{2}}\right)^{i\frac{\epsilon}{2}} S_{\epsilon}^{i} \bar{K}^{I,(i)} \qquad \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left(\frac{Q_{z}^{2}}{\mu^{2}}\right)^{i\frac{\epsilon}{2}} S_{\epsilon}^{i} \bar{G}_{\mathrm{SJ}}^{I,(i)}(\epsilon) = \sum_{i=1}^{\infty} a_{s}^{i} (Q_{z}^{2}) \bar{\mathcal{G}}_{i,\mathrm{SJ}}^{I}(\epsilon)$$

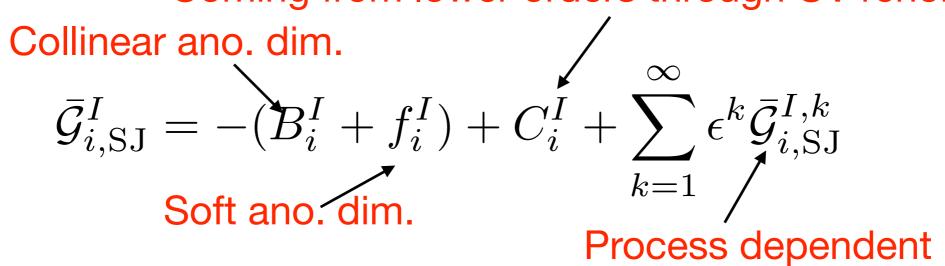
with
$$Q_z^2 = Q^2(1-z)$$

Solution

[Ravindran (0512249, 0603041)]

* And the coefficient $\bar{\mathcal{G}}_{i,\mathrm{SJ}}^{I}(\epsilon)$ is given by

Coming from lower orders through UV renorm.



*We have extracted these process dependent coefficients from already computed coefficient function for DIS processes which implies the result of $\Phi^I_{\rm SJ}$.

[Vermaseren et al. (0504242), Soar et al. (0912.0369)]

Connection

[Banerjee, PKD, Ravindran (1805.02637)]

*One can factor all the singular terms from Soft plus Jet function in following way:

Finite to all orders as $\epsilon \to 0$

Contains all singular terms order by order in α_s / $\mathcal{C}e^{2\Phi_{\mathrm{SJ}}^I} = \mathcal{Z}^I \otimes \mathcal{C}e^{2\Phi_{\mathrm{SJ}}^{I,\mathrm{fin}}}$

with $\mathcal{Z}^I = \delta(1-z) + \sum_{i=1}^n \sum_{j=1}^{2i} a_s^i \, \frac{\mathcal{Z}^I_{i\,j}}{\epsilon^j}$ and identification of SCET

Jet function as

$$\mathcal{C}e^{2\Phi_{\mathrm{SJ}}^{I,\mathrm{fin}}} = \delta(1-z) + \sum_{i=1}^{\infty} a_s^i J_i^I \Big|_k$$
 Denotes the coefficient of $\delta(1-z)$ or $\mathcal{D}_i(z) = \left[\frac{\log^i(1-z)}{1-z}\right]_+$

Result

[Banerjee, PKD, Ravindran (1805.02637)]

*Delta function coefficient of the gluon jet function is given by

$$\begin{split} J_3^g\big|_{\delta} &= C_A^3 \left[\frac{55853711}{26244} - 44\zeta_5 - \frac{452770}{243}\zeta_3 + \frac{1600}{9}\zeta_3^2 - \frac{2055109}{4374}\pi^2 + \frac{1364}{9}\pi^2\zeta_3 + \frac{53633}{1620}\pi^4 - \frac{16309}{20412}\pi^6 \right] \\ &+ C_A^2 n_f \left[-\frac{17323633}{26244} + \frac{208}{9}\zeta_5 + \frac{2734}{9}\zeta_3 + \frac{330062}{2187}\pi^2 - \frac{88}{9}\pi^2\zeta_3 - \frac{18727}{2430}\pi^4 \right] + C_F^2 n_f \left[\frac{143}{9} - 80\zeta_5 + \frac{148}{3}\zeta_3 \right] \\ &+ C_A n_f^2 \left[\frac{1613639}{26244} - \frac{1004}{243}\zeta_3 - \frac{3656}{243}\pi^2 + \frac{506}{1215}\pi^4 \right] \\ &+ C_F n_f^2 \left[\frac{7001}{162} - \frac{104}{3}\zeta_3 - \frac{10}{9}\pi^2 \right] \\ &+ C_A C_F n_f \left[-\frac{389369}{972} + \frac{584}{9}\zeta_5 + \frac{21200}{81}\zeta_3 + \frac{712}{27}\pi^2 - \frac{160}{9}\pi^2\zeta_3 + \frac{76}{405}\pi^4 \right] + n_f^3 \left[-\frac{1000}{729} + \frac{40}{81}\pi^2 \right] \end{split}$$

Result

[Banerjee, PKD, Ravindran (1805.02637)]

*Delta function coefficient of the quark jet function is given by

$$\begin{split} J_3^q|_{\delta} &= C_F^3 \left[274\zeta_3 + \frac{22}{3}\pi^2\zeta_3 - \frac{400}{3}\zeta_3^2 - 88\zeta_5 + \frac{1173}{8} - \frac{3505}{72}\pi^2 + \frac{622}{45}\pi^4 - \frac{9871}{8505}\pi^6 \right] \\ &+ C_A C_F^2 \left[-\frac{28241}{27}\zeta_3 + \frac{2200}{27}\pi^2\zeta_3 + \frac{424}{3}\zeta_3^2 + \frac{560}{9}\zeta_5 + \frac{206197}{324} - \frac{17585}{72}\pi^2 + \frac{18703}{1215}\pi^4 + \frac{1547}{4860}\pi^6 \right] \\ &+ C_A^2 C_F \left[-\frac{187951}{243}\zeta_3 + \frac{394}{9}\pi^2\zeta_3 + \frac{1528}{9}\zeta_3^2 - \frac{380}{9}\zeta_5 + \frac{50602039}{52488} - \frac{464665}{4374}\pi^2 + \frac{1009}{1620}\pi^4 + \frac{221}{5103}\pi^6 \right] \\ &+ C_A C_F n_f \left[\frac{7414}{81}\zeta_3 - \frac{32}{9}\pi^2\zeta_3 + \frac{16}{3}\zeta_5 - \frac{2942843}{13122} + \frac{68324}{2187}\pi^2 - \frac{209}{405}\pi^4 \right] \\ &+ C_F n_f \left[\frac{11216}{81}\zeta_3 - \frac{136}{27}\pi^2\zeta_3 + \frac{80}{3}\zeta_5 - \frac{261587}{972} + \frac{4853}{108}\pi^2 - \frac{2938}{1215}\pi^4 \right] \\ &+ C_F n_f^2 \left[\frac{376}{243}\zeta_3 + \frac{124903}{13122} - \frac{466}{243}\pi^2 + \frac{2}{45}\pi^4 \right] \text{ In agreement with 1804.09722} \end{split}$$

Result

[Banerjee, PKD, Ravindran (1805.02637)]

*The coefficients of plus distribution (scale dependent) terms can be obtained through the RGE satisfied by the jet function

$$\mu_R^2 \frac{d}{d\mu_R^2} J^I = \gamma_J^I \otimes J^I$$

Jet anomalous dimension

$$\gamma_J^I = \left[B^I + f^I - A^I \log \left(\frac{Q^2}{\mu_R^2} \right) \right] \delta(1 - z) - A^I \mathcal{D}_0$$

Comments From Past

*Previously computed results for the soft function in the context of Higgs & DY agrees with soft functions in SCET framework.

* Several results at N3LO in recent past has been obtained using the above information.

[C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, B. Mistlberger (1403.4616), T. Ahmed, M. Mahakhud, M. K. Mandal, N. Rana, V. Ravindran (1404.0366, 1404.6504, 1408.0787, 1411.5301)]

* These results were verified from the explicit computation.

[S. Catani, L. Cieri, D. de Florian, G, Ferrera, M. Grazzini (1404.5839), Y. Li, A. von Manteuffel, R. Schabinger, H. X. Zhu(1405.4827)]

Summary

- *Using the explicit result for DIS coefficient function, we have extracted both quark and gluon jet functions at 3-loops.
- *This is achieved through finding a novel connection between soft plus jet functions of DIS and jet functions in the SCET framework.
- *These results will contribute in precise theoretical prediction of observables through resummation probing the invariant masses of jets at N3LL accuracy.
- *Our results will also provide a major component in N-jettiness formalism at N3LO.

Summary

- *Using the explicit result for DIS coefficient function, we have extracted both quark and gluon jet functions at 3-loops.
- *This is achieved through finding a novel connection between soft plus jet functions of DIS and jet functions in the SCET framework.
- *These results will contribute in precise theoretical prediction of observables through resummation probing the invariant masses of jets at N3LL accuracy.
- *Our results will also provide a major component in N-jettiness formalism at N3LO.

Thank You For Your Attention