Analytic multi-loop results using finite fields and dataflow graphs with FiniteFlow

Tiziano Peraro (University of Zürich)
RADCOR 2019
9 September 2019

Based on:
Experiments at LHC

- high-accuracy (% level)
- large SM background
- high c.o.m. energy \Rightarrow multi-particle states

We need scattering amplitudes

- describe hard partonic interaction
- high accuracy \Rightarrow loops (% level \sim 2 loops)
- multi-particle \Rightarrow high multiplicity

Theoretical studies of amplitudes

- structures of QFT/gauge theories
Two and higher loops

- **Algebraic** calculations for multi-loop amplitudes
 - preferred strategy @ $\ell \geq 2$ loops
 - faster/more stable evaluation
 - better suited for many multi-loop techniques
 - allows more tests, studies, etc... and better control
 - often characterized by **high complexity**

- **Complexity** can be a combination of
 - number of loops for high accuracy
 - number of legs for high multiplicity
 - numbers of scales (invariants, external/internal masses)
Loop amplitudes

- An integrand contribution to ℓ-loop amplitude

$$A = \int_{-\infty}^{\infty} \left(\prod_{i=1}^{\ell} d^{d}k_{i} \right) \frac{\mathcal{N}}{D_{1}D_{2}D_{3}\cdots}$$

- rational function in the components of loop momenta k_{j}
- polynomial numerator \mathcal{N}
- quadratic denominators corresp. to loop propagators

$$D_{j} = l_{j}^{2} - m_{j}^{2}$$
Computing amplitudes

1. Write amplitudes as l.c. of Feynman integrals

\[A = \sum_j a_j I_j \]

- \(a_j \) rational functions of invariants
- \(I_j \) integrals with a “nice” / “standard” form

2. reduce \(I_j \) to linearly independent Master Integrals (MIs)

\[\{ G_1, G_2, \ldots \} \subset \{ I_j \} \]

- generate and solve Integration-By-Parts (IBP) identities

\[I_j = \sum_k c_{jk} G_k \]

3. Compute the MIs
Finite fields and functional reconstruction

A major bottleneck

- Large intermediate expressions
- Intermediate stages much more complicated than final result

Functional reconstruction

- reconstruct analytic results from numerical evaluations
 - evaluation over finite fields \mathbb{Z}_p (i.e. modulo prime integers p)
 - use machine-size integers, $p < 2^{64} \Rightarrow$ fast and exact
 - collect numerical evaluations and infer analytic result
- sidesteps large intermediate expressions & highly parallelizable
- first applications
 - IBPs and univ. reconstruction \textit{von Manteuffel, Schabinger (2014)}
 - helicity amplitudes and multivariate reconstruction \textit{T.P. (2016)}
Some notable examples

- **FINRed (private)** [von Manteuffel]
 - several results for 4-loop form factors [von Manteuffel, Schabinger]

- **FINITEFLOW [T.P.]**
 - Several two-loop five-point amplitudes
 [Badger, Brønnum-Hansen, Hartanto, T.P.;
 Badger, Chicherin, Gehrmann, Heinrich, Henn, T.P., Wasser, Zhang, Zoia]
 - Matter dependence of the four-loop cusp anomalous dimension
 [Henn, T.P., Stahlhofen, Wasser]

- Private code
 [Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov, Zeng]
 - analytic five-parton amplitudes

- **FIRE 6 [A.V. Smirnov, F.S. Chuharev]**
 - Four-loop quark form factor with quartic fundamental colour factor [Lee, Smirnov, Smirnov, Steinhauser]
The black-box interpolation problem

Given a rational function f in the variables $z = (z_1, \ldots, z_n)$ over \mathbb{Q}

- Reconstruct analytic form of f, given a numerical procedure

\[(z, p) \rightarrow f \rightarrow f(z) \mod p.\]

- Evaluate f numerically for several z and p

- Efficient multivariate reconstruction algorithms exist
e.g. T.P. (2016,2019), Klappert, Lange (2019)

- Upgrade analytic f over \mathbb{Q} using rational reconstruction algorithm
[Wang (1981)] and Chinese remainder theorem
The black-box interpolation problem

Given a rational function f in the variables $z = (z_1, \ldots, z_n)$ over \mathbb{Q}

- Reconstruct analytic form of f, given a numerical procedure

\[
(z, p) \rightarrow f \rightarrow f(z) \mod p.
\]

- evaluate f numerically for several z and p

- efficient multivariate reconstruction algorithms exist
e.g. T.P. (2016,2019), Klappert, Lange (2019)

- upgrade analytic f over \mathbb{Q} using rational reconstruction algorithm
 [Wang (1981)] and Chinese remainder theorem

Question in this talk
How to build the black box?
Example: Scattering amplitudes over finite fields

- External states (momenta and polarizations)
 - rational parametrization with momentum twistors variables
 Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)
- Tree-level
 - diagrams or recursion relations (e.g. Berends-Giele)
- Loop integrands
 - Feynman diagrams and t'Hooft algebra
 - Unitarity cuts sewing tree-level currents
 - higher finite-dim. representation of internal states in dim. reg.
- Integrand reduction
 - linear fit to a “nice” integrand basis
How to build a code for fast numerical evaluations of finite fields? We can consider a few options:

1. Low-level coding (e.g. in C/C++/Fortran)?
 - ✔ very good runtime efficiency
 - ✗ harder to program
 - ✗ limits usability

2. Low-level coding + high-level interfaces?
 - • common algorithms in C++ (e.g. linear solvers, fits, etc.)
 - • high-level wrapper (e.g. for Mathematica/Python)
 - ✔ good efficiency and usability
 - ✗ not flexible
 - ✗ these algorithms are often intermediate steps
How to build the black box?

Observations:

- A typical multi-loop algorithm involves several steps
 - solving linear systems
 - substitutions / changes of variables
 - etc.

- Large simplifications often occur at the very last stages
 - it’s best to do everything numerically
 - only the final expression reconstructed analytically

- Many algorithms share common “building blocks”
FiniteFlow [T.P. (2019)] has three main components

1. “basic” algorithms in C++ over finite fields
 - dense/sparse linear solvers, linear fits, evaluating rat. functions, list manipulations, etc.

2. higher-level framework to combine them into complex ones
 - output of a basic algorithm is input of others
 - graphical representation of your calculation (dataflow graphs)

3. multivariate reconstruction algorithms

FiniteFlow

- build complex algorithms without any low-level programming (e.g. from Mathematica interface)
- many methods for amplitudes can be cast in this framework
FiniteFlow: using data flow graphs

- **FiniteFlow** uses (simplified) data flow graphs
 - **Nodes** represent numerical algorithms
 - **Arrows** represent lists of numerical values
- In my implementation, a node has
 - 0 or more lists (arrows) of input values
 - 1 list (arrow) of output values
Example of a graph
Example: Evaluation of rational functions

- input: a list of values $z = (z_1, \ldots, z_n)$
- output: a list of rational functions $\{f_1, f_2, \ldots\}$ at z

$$f_i(z) = \frac{p_i(z)}{q_i(z)} = \frac{\sum_{\alpha} n_{i,\alpha} z^{\alpha}}{\sum_{\beta} d_{i,\beta} z^{\beta}},$$

\[z \xrightarrow{\text{rat. fun. eval.}} \{ f_1(z), f_2(z), \ldots \} \]
Example: Matrix multiplication

- Two lists as input
 1. entries of a matrix A
 2. entries of a matrix B
- use row-major order to store them as a list
- output: entries of matrix C such that

$$C_{ij} = \sum_k A_{ik} B_{kj}$$

A diagram illustrating matrix multiplication with inputs A_{ij} and B_{ij} and output C_{ij}.
Example: Linear solver

- A $n \times m$ linear system with parametric rational entries

$$
\sum_{j=1}^{m} A_{ij} x_j = b_i, \quad (i = 1, \ldots, n), \quad A_{ij} = A_{ij}(z), \quad b_i = b_i(z)
$$

- input: list of values for parameters $z = (z_1, \ldots, z_n)$
- output: solution $c_{ij} = c_{ij}(z)$ such that

$$
x_i = \sum_{j \in \text{indep}} c_{ij} x_j + c_{i0} \quad (i \notin \text{indep})
$$

\[z \xrightarrow{\text{linear solver}} \{c_{ij}(z)\}\]
Learning algorithms

• Some algorithms have a **learning phase**
 • used to learn information for defining its output
 • must be completed before using them

• Example: **linear solver**
 • learn: its rank, dep. and indep. unknowns, indep. eq.s
 • learning phase: solve the system numerically a few times
 • optional: mark & sweep equations (sparse solver)
• Any graph G_1 can be used as a subgraph by an algorithm (a node) A belonging to another graph G_2
 • A will evaluate G_1 several times to compute its output
 • input of $G_1 = $ auxiliary variables chained with inputs of A

• Examples
 • Laurent expansion w.r.t. a variable
 • maps: evaluate G_1 for several inputs
 • partial reconstructions w.r.t. a subset of variables
 • (total or partial) fits w.r.t. and ansatz
 • etc...
• IBPs are \textbf{large} and \textbf{sparse} linear systems

• they reduce Feynman integrals I_j to a lin. indep. set of MIs G_j

\[
I_i = \sum_j c_{i j} G_j
\]

• amplitudes and other multi-loop objects can be reduced mod IBPs

\[
A = \sum_j a_j I_j = \sum_{j k} a_j c_{j k} G_k = \sum_j A_j G_j, \quad \text{with} \quad A_j = \sum_k a_k c_{k j}
\]

• final results for A_k often much simpler than $c_{i j}$

\Rightarrow solve IBPs numerically and compute A_j via a matrix multiplication

• Similar approach for \textbf{differential equations} for MIs
IBP reduction

- Input node: \(\{\epsilon, x\} \)
- Evaluate: \(\alpha_j \)
- Mat. mul: \(C_{jk} \)
- Output

Diagram:

- Input node: \(\{\epsilon, x\} \) to evaluate \(\alpha_j \)
- Evaluate \(\alpha_j \) to mat. mul \(C_{jk} \)
- Mat. mul \(C_{jk} \) to output
Coefficients of the ϵ-expansion

If MIs are known analytically in terms of special functions f_k

$$G_j = \sum_k g_{jk}(\epsilon, x) f_k + \mathcal{O}(\epsilon),$$

$G_1 = \{\epsilon, x\} \xrightarrow{\text{MIs coeff.s}} A_j \xrightarrow{\text{mat. mul}} \xrightarrow{\text{evaluate}} g_{jk} \xrightarrow{\text{output}}$

$G_2 = \{x\} \xrightarrow{\text{Laurent}} G_1 \xrightarrow{\text{output}}$
Cutting-edge applications of FiniteFlow

- Five-point two-loop amplitudes
 - Several planar results for five partons and $W + 4$ partons
 [Badger, Brønnum-Hansen, Hartanto, T.P. (2017-2019)]
 - all-plus five gluon non-planar [Badger, Chicherin, Gehrmann, Heinrich, Henn, T.P., Wasser, Zhang, Zoia (2019)]
Cutting-edge applications of FiniteFlow

- Matter dependence of the 4-loop cusp anomalous dimension

[Henn, T.P., Stahlhofen, Wasser (2019)] ⇒ see M. Stahlhofen's talk
Public codes

- **FiniteFlow**

 https://github.com/peraro/finiteflow

 - C++ code
 - Mathematica interface (strongly recommended)

- **FiniteFlow MathTools**

 https://github.com/peraro/finiteflow-mathtools

 - packages FFUtils, LiteMomentum, LiteIBP, Symbols
 - examples (amplitudes, IBPs, diff. equations and many more)
Example of graphs in FiniteFlow

Piecing together the all-plus five gluon amplitude (only planar contributions are shown)
Summary

• Finite fields and functional reconstruction
 • enhance the possibilities of our theoretical predictions
 • new results unattainable with traditional computer algebra
 • public code \texttt{FINITEFLOW}

• Progress on 2-loop 5-point and other complex processes

Outlook

• More applications
 • massive processes, phase-space integrals, \ldots

• High level of automation for higher-loop predictions