Analytic multi-loop results using finite fields and dataflow graphs with FiniteFlow

Tiziano Peraro (University of Zürich) RADCOR 2019 9 September 2019

Based on:

T. P., JHEP 1907 (2019) 031, arXiv:1905.08019

Experiments at LHC

- high-accuracy (% level)
- large SM background
- high c.o.m. energy \Rightarrow multi-particle states

We need scattering amplitudes

- describe hard partonic interaction
- high accuracy \Rightarrow loops (% level \sim 2 loops)
- multi-particle \Rightarrow high multiplicity

Theoretical studies of amplitudes

• structures of $QFT/gauge$ theories

Two and higher loops

- Algebraic calculations for multi-loop amplitudes
	- preferred strategy $\mathcal{Q} \ell > 2$ loops
		- faster/more stable evaluation
		- better suited for many multi-loop techniques
		- allows more tests, studies, etc... and better control
	- often characterized by high complexity

- Complexity can be a combination of
	- number of loops for high accuracy
	- number of legs for high multiplicity
	- numbers of scales (invariants, external/internal masses)

Loop amplitudes

• An integrand contribution to ℓ -loop amplitude

$$
\mathcal{A} = \int_{-\infty}^{\infty} \left(\prod_{i=1}^{\ell} d^d k_i \right) \frac{\mathcal{N}}{D_1 D_2 D_3 \cdots}
$$

- rational function in the components of loop momenta k_i
- polynomial numerator $\mathcal N$
- quadratic denominators corresp. to loop propagators

$$
D_j = l_j^2 - m_j^2
$$

Computing amplitudes

1. Write amplitudes as l.c. of Feynman integrals

$$
\mathcal{A}=\sum_j a_j I_j
$$

- a_i rational functions of invariants
- I_i integrals with a "nice" / "standard" form
- 2. reduce I_i to linearly independent Master Integrals (MIs) $\{G_1, G_2, \ldots\} \subset \{I_i\}$
	- generate and solve Integration-By-Parts (IBP) identities Chetyrkin, Tkachov (1981), Laporta (2000)

$$
I_j = \sum_k c_{jk} G_k
$$

3. Compute the MIs

A major bottleneck

- Large intermediate expressions
- Intermediate stages much more complicated than final result

Functional reconstruction

- reconstruct analytic results from numerical evaluations
	- evaluation over finite fields \mathcal{Z}_p (i.e. modulo prime integers p)
	- $\bullet\,$ use machine-size integers, $p < 2^{64} \Rightarrow$ fast and exact
	- collect numerical evaluations and infer analytic result
- sidesteps large intermediate expressions & highly parallelizable
- first applications
	- IBPs and univ. reconstruction von Manteuffel, Schabinger (2014)
	- helicity amplitudes and multivariate reconstruction T.P. (2016)

Some notable examples

- \bullet FINRED (private) [von Manteuffel]
	- several results for 4-loop form factors [von Manteuffel, Schabinger]
- FINITEFLOW [T.P.]
	- Several two-loop five-point amplitudes [Badger, Brønnum-Hansen, Hartanto, T.P.;

Badger, Chicherin, Gehrmann, Heinrich, Henn, T.P., Wasser, Zhang, Zoia]

- Matter dependence of the four-loop cusp anomalous dimension [Henn, T.P., Stahlhofen, Wasser]
- Private code

[Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov, Zeng]

- analytic five-parton amplitudes
- FIRE 6 [A.V. Smirnov, F.S. Chuharev]
	- Four-loop quark form factor with quartic fundamental colour factor [Lee, Smirnov, Smirnov, Steinhauser]

The black-box interpolation problem

Given a rational function f in the variables $z = (z_1, \ldots, z_n)$ over Q

• Reconstruct analytic form of f , given a numerical procedure

$$
(z,p) \longrightarrow \boxed{f} \longrightarrow f(z) \text{ mod } p.
$$

- evaluate f numerically for several z and p
- efficient multivariate reconstruction algorithms exist e.g. T.P. (2016,2019), Klappert, Lange (2019)
- upgrade analytic f over Q using rational reconstruction algorithm [Wang (1981)] and Chinese remainder theorem

The black-box interpolation problem

Given a rational function f in the variables $z = (z_1, \ldots, z_n)$ over Q

• Reconstruct analytic form of f , given a numerical procedure

$$
(z,p) \longrightarrow \boxed{f} \longrightarrow f(z) \text{ mod } p.
$$

- evaluate f numerically for several z and p
- efficient multivariate reconstruction algorithms exist e.g. T.P. (2016,2019), Klappert, Lange (2019)
- upgrade analytic f over Q using rational reconstruction algorithm [Wang (1981)] and Chinese remainder theorem

Question in this talk

How to build the black box?

Example: Scattering amplitudes over finite fields

T.P. (2016)

- External states (momenta and polarizations)
	- rational parametrization with momentum twistors variables Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)
- Tree-level
	- diagrams or recursion relations (e.g. Berends-Giele)
- Loop integrands
	- Feynman diagrams and t'Hooft algebra
	- Unitarity cuts sewing tree-level currents
		- higher finite-dim. representation of internal states in dim. reg.
- Integrand reduction
	- linear fit to a "nice" integrand basis

How to build a code for fast numerical evaluations of finite fields? We can consider a few options:

- 1. Low-level coding (e.g. in $C/C++/FORM$ FORTRAN)?
	- ✓ very good runtime efficiency
	- ✗ harder to program
	- ✗ limits usability
- 2. Low-level coding $+$ high-level interfaces?
	- common algorithms in $C++$ (e.g. linear solvers, fits, etc...)
	- \bullet high-level wrapper (e.g. for MATHEMATICA/PYTHON)
	- ✓ good efficiency and usability
	- ✗ not flexible
	- χ these algorithms are often intermediate steps

Observations:

- A typical multi-loop algorithm involves several steps
	- solving linear systems
	- substitutions / changes of variables
	- e etc. \ldots
- Large simplifications often occur at the very last stages
	- it's best to do everything numerically
	- only the final expression reconstructed analytically
- Many algorithms share common "building blocks"

FiniteFlow: using data flow graphs

FINITEFLOW [T.P. (2019)] has three main components

- 1. "basic" algorithms in $C++$ over finite fields
	- dense/sparse linear solvers, linear fits, evaluating rat. functions, list manipulations, etc. . .
- 2. higher-level framework to combine them into complex ones
	- output of a basic algorithm is input of others
	- graphical representation of your calculation (dataflow graphs)
- 3. multivariate reconstruction algorithms

FiniteFlow

- build complex algorithms without any low-level programming (e.g. from MATHEMATICA interface)
- many methods for amplitudes can be cast in this framework

FiniteFlow: using data flow graphs

- FINITEFLOW uses (simplified) data flow graphs
	- Nodes represent numerical algorithms
	- Arrows represent lists of numerical values
- In my implementation, a node has
	- 0 or more lists (arrows) of input values
	- 1 list (arrow) of output values

Example of a graph

Example: Evaluation of rational functions

- input: a list of values $z = (z_1, \ldots, z_n)$
- output: a list of rational functions $\{f_1, f_2, ...\}$ at z

$$
f_i(z) = \frac{p_i(z)}{q_i(z)} = \frac{\sum_{\alpha} n_{i,\alpha} z^{\alpha}}{\sum_{\beta} d_{i,\beta} z^{\beta}},
$$

Example: Matrix multiplication

- Two lists as input
	- 1. entries of a matrix A
	- 2. entries of a matrix B
- use row-major order to store them as a list
- ouput: entries of matrix C such that

$$
C_{ij} = \sum_{k} A_{ik} B_{kj}
$$

Example: Linear solver

• A $n \times m$ linear system with parametric rational entries

$$
\sum_{j=1}^{m} A_{ij} x_j = b_i, \quad (i = 1, ..., n), \qquad A_{ij} = A_{ij}(z), \quad b_i = b_i(z)
$$

- input: list of values for paramers $z = (z_1, \ldots, z_n)$
- output: solution $c_{ij} = c_{ij}(z)$ such that

$$
x_i = \sum_{j \in \text{indep}} c_{ij} x_j + c_{i0} \qquad (i \notin \text{indep})
$$

$$
z \longrightarrow \boxed{\text{linear}} \longrightarrow \{c_{ij}(z)\}
$$

- Some algorithms have a learning phase
	- used to learn information for defining its output
	- must be completed before using them
- Example: linear solver
	- learn: its rank, dep. and indep. unknowns, indep. eq.s
	- learning phase: solve the system numerically a few times
	- optional: mark & sweep equations (sparse solver)
- Any graph G_1 can be used as a subgraph by an algorithm (a node) A belonging to another graph G_2
	- A will evaluate G_1 several times to compute its output
	- input of G_1 = auxiliary variables chained with inputs of A
- Examples
	- Laurent expansion w.r.t. a variable
	- maps: evaluate G_1 for several inputs
	- partial reconstructions w.r.t. a subset of variables
	- (total or partial) fits w.r.t. and ansatz
	- e etc. \ldots

IBP reduction

- IBPs are large and sparse linear systems
- they reduce Feynman integrals I_i to a lin. indep. set of MIs G_i

$$
I_i = \sum_j c_{ij} G_j
$$

• amplitudes and other multi-loop objects can be reduced mod IBPs

$$
A = \sum_{j} a_{j} I_{j} = \sum_{jk} a_{j} c_{jk} G_{k} = \sum_{j} A_{j} G_{j}, \text{ with } A_{j} = \sum_{k} a_{k} c_{kj}
$$

- final results for A_k often much simpler than c_{ij}
- \Rightarrow solve IBPs numerically and compute A_i via a matrix multiplication
	- Similar approach for differential equations for MIs

IBP reduction

Coefficients of the ϵ -expansion

If MIs are known analytically in terms of special functions f_k

Cutting-edge applications of FiniteFlow

- Five-point two-loop amplitudes
	- Several planar results for five partons and $W + 4$ partons [Badger, Brønnum-Hansen, Hartanto, T.P. (2017-2019)]
	- all-plus five gluon non-planar [Badger, Chicherin, Gehrmann, Heinrich, Henn, T.P., Wasser, Zhang, Zoia (2019)]

Cutting-edge applications of FiniteFlow

• Matter dependence of the 4-loop cusp anomalous dimension [Henn, T.P., Stahlhofen, Wasser (2019)] \Rightarrow see M. Stahlhofen's talk

• FINITEFLOW

<https://github.com/peraro/finiteflow>

- \bullet C++ code
- MATHEMATICA interface (strongly recommended)
- FINITEFLOW MATHTOOLS

<https://github.com/peraro/finiteflow-mathtools>

- packages FFUtils, LiteMomentum, LiteIBP, Symbols
- examples (amplitudes, IBPs, diff. equations and many more)

Example of graphs in FiniteFlow

Piecing together the all-plus five gluon amplitude (only planar contributions are shown)

Summary & Outlook

Summary

- Finite fields and functional reconstruction
	- enhance the possibilities of our theoretical predictions
	- new results unattainable with traditional computer algebra
	- public code FINITEFLOW
- Progress on 2-loop 5-point and other complex processes

Outlook

- More applications
	- massive processes, phase-space integrals, ...
- High level of automation for higher-loop predictions