
Analytic multi-loop results using finite fields

and dataflow graphs with FiniteFlow

Tiziano Peraro (University of Zürich)

RADCOR 2019

9 September 2019

Based on:

T. P., JHEP 1907 (2019) 031, arXiv:1905.08019



Introduction & motivation

Experiments at LHC

• high-accuracy (% level)

• large SM background

• high c.o.m. energy ⇒ multi-particle states

We need scattering amplitudes

• describe hard partonic interaction

• high accuracy ⇒ loops (% level ∼ 2 loops)

• multi-particle ⇒ high multiplicity

Theoretical studies of amplitudes

• structures of QFT/gauge theories

1



Two and higher loops

• Algebraic calculations for multi-loop amplitudes

• preferred strategy @ ` ≥ 2 loops

• faster/more stable evaluation

• better suited for many multi-loop techniques

• allows more tests, studies, etc. . . and better control

• often characterized by high complexity

• Complexity can be a combination of

• number of loops for high accuracy

• number of legs for high multiplicity

• numbers of scales (invariants, external/internal masses)

2



Loop amplitudes

• An integrand contribution to `-loop amplitude

A =

∫ ∞
−∞

(∏̀
i=1

ddki

)
N

D1D2D3 · · ·

• rational function in the components of loop momenta kj
• polynomial numerator N
• quadratic denominators corresp. to loop propagators

Dj = l2j −m2
j

3



Computing amplitudes

1. Write amplitudes as l.c. of Feynman integrals

A =
∑
j

ajIj

• aj rational functions of invariants

• Ij integrals with a “nice”/“standard” form

2. reduce Ij to linearly independent Master Integrals (MIs)
{G1, G2, . . .} ⊂ {Ij}
• generate and solve Integration-By-Parts (IBP) identities

Chetyrkin, Tkachov (1981), Laporta (2000)

Ij =
∑
k

cjkGk

3. Compute the MIs

4



Finite fields and functional reconstruction

A major bottleneck

• Large intermediate expressions

• Intermediate stages much more complicated than final result

Functional reconstruction

• reconstruct analytic results from numerical evaluations

• evaluation over finite fields Zp (i.e. modulo prime integers p)

• use machine-size integers, p < 264 ⇒ fast and exact

• collect numerical evaluations and infer analytic result

• sidesteps large intermediate expressions & highly parallelizable

• first applications

• IBPs and univ. reconstruction von Manteuffel, Schabinger (2014)

• helicity amplitudes and multivariate reconstruction T.P. (2016)

5



Some notable examples

• FinRed (private) [von Manteuffel]

• several results for 4-loop form factors [von Manteuffel, Schabinger]

• FiniteFlow [T.P.]

• Several two-loop five-point amplitudes
[Badger, Brønnum-Hansen, Hartanto, T.P.;

Badger, Chicherin, Gehrmann, Heinrich, Henn, T.P., Wasser, Zhang, Zoia]

• Matter dependence of the four-loop cusp anomalous dimension

[Henn, T.P., Stahlhofen, Wasser]

• Private code
[Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov, Zeng]

• analytic five-parton amplitudes

• Fire 6 [A.V. Smirnov, F.S. Chuharev]

• Four-loop quark form factor with quartic fundamental colour

factor [Lee, Smirnov, Smirnov, Steinhauser]

6



The black-box interpolation problem

Given a rational function f in the variables z = (z1, . . . , zn) over Q

• Reconstruct analytic form of f , given a numerical procedure

(z, p) −→ f −→ f(z) mod p.

• evaluate f numerically for several z and p

• efficient multivariate reconstruction algorithms exist

e.g. T.P. (2016,2019), Klappert, Lange (2019)

• upgrade analytic f over Q using rational reconstruction algorithm

[Wang (1981)] and Chinese remainder theorem

Question in this talk

How to build the black box?

7



The black-box interpolation problem

Given a rational function f in the variables z = (z1, . . . , zn) over Q

• Reconstruct analytic form of f , given a numerical procedure

(z, p) −→ f −→ f(z) mod p.

• evaluate f numerically for several z and p

• efficient multivariate reconstruction algorithms exist

e.g. T.P. (2016,2019), Klappert, Lange (2019)

• upgrade analytic f over Q using rational reconstruction algorithm

[Wang (1981)] and Chinese remainder theorem

Question in this talk

How to build the black box?

7



Example: Scattering amplitudes over finite fields

T.P. (2016)

• External states (momenta and polarizations)

• rational parametrization with momentum twistors variables

Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)

• Tree-level

• diagrams or recursion relations (e.g. Berends-Giele)

• Loop integrands

• Feynman diagrams and t’Hooft algebra

• Unitarity cuts sewing tree-level currents

• higher finite-dim. representation of internal states in dim. reg.

• Integrand reduction

• linear fit to a “nice” integrand basis

8



How to build the black box?

How to build a code for fast numerical evaluations of finite fields?

We can consider a few options:

1. Low-level coding (e.g. in C/C++/Fortran)?

3 very good runtime efficiency

7 harder to program

7 limits usability

2. Low-level coding + high-level interfaces?

• common algorithms in C++ (e.g. linear solvers, fits, etc. . . )

• high-level wrapper (e.g. for Mathematica/Python)

3 good efficiency and usability

7 not flexible

7 these algorithms are often intermediate steps

9



How to build the black box?

Observations:

• A typical multi-loop algorithm involves several steps

• solving linear systems

• substitutions / changes of variables

• etc. . .

• Large simplifications often occur at the very last stages

• it’s best to do everything numerically

• only the final expression reconstructed analytically

• Many algorithms share common “building blocks”

10



FiniteFlow: using data flow graphs

FiniteFlow [T.P. (2019)] has three main components

1. “basic” algorithms in C++ over finite fields

• dense/sparse linear solvers, linear fits, evaluating rat.

functions, list manipulations, etc. . .

2. higher-level framework to combine them into complex ones

• output of a basic algorithm is input of others

• graphical representation of your calculation (dataflow graphs)

3. multivariate reconstruction algorithms

FiniteFlow

• build complex algorithms without any low-level programming

(e.g. from Mathematica interface)

• many methods for amplitudes can be cast in this framework

11



FiniteFlow: using data flow graphs

• FiniteFlow uses (simplified) data flow graphs

• Nodes represent numerical algorithms

• Arrows represent lists of numerical values

• In my implementation, a node has

• 0 or more lists (arrows) of input values

• 1 list (arrow) of output values

12



Example of a graph

13



Example: Evaluation of rational functions

• input: a list of values z = (z1, . . . , zn)

• output: a list of rational functions {f1, f2, . . .} at z

fi(z) =
pi(z)

qi(z)
=

∑
α ni,α z

α∑
β di,β z

β
,

14



Example: Matrix multiplication

• Two lists as input

1. entries of a matrix A

2. entries of a matrix B

• use row-major order to store them as a list

• ouput: entries of matrix C such that

Cij =
∑
k

Aik Bkj

15



Example: Linear solver

• A n×m linear system with parametric rational entries

m∑
j=1

Aij xj = bi, (i = 1, . . . , n), Aij = Aij(z), bi = bi(z)

• input: list of values for paramers z = (z1, . . . , zn)

• output: solution cij = cij(z) such that

xi =
∑

j∈indep

cij xj + ci0 (i 6∈ indep)

16



Learning algorithms

• Some algorithms have a learning phase

• used to learn information for defining its output

• must be completed before using them

• Example: linear solver

• learn: its rank, dep. and indep. unknowns, indep. eq.s

• learning phase: solve the system numerically a few times

• optional: mark & sweep equations (sparse solver)

17



Subgraphs

• Any graph G1 can be used as a subgraph by an algorithm (a
node) A belonging to another graph G2

• A will evaluate G1 several times to compute its output

• input of G1 = auxiliary variables chained with inputs of A

• Examples

• Laurent expansion w.r.t. a variable

• maps: evaluate G1 for several inputs

• partial reconstructions w.r.t. a subset of variables

• (total or partial) fits w.r.t. and ansatz

• etc. . .

18



IBP reduction

• IBPs are large and sparse linear systems

• they reduce Feynman integrals Ij to a lin. indep. set of MIs Gj

Ii =
∑
j

cij Gj

• amplitudes and other multi-loop objects can be reduced mod IBPs

A =
∑
j

aj Ij =
∑
jk

aj cjkGk =
∑
j

Aj Gj , with Aj =
∑
k

ak ckj

• final results for Ak often much simpler than cij

⇒ solve IBPs numerically and compute Aj via a matrix multiplication

• Similar approach for differential equations for MIs

19



IBP reduction

20



Coefficients of the ε-expansion

If MIs are known analytically in terms of special functions fk

Gj =
∑
k

gjk(ε, x) fk +O(ε),

21



Cutting-edge applications of FiniteFlow

• Five-point two-loop amplitudes
• Several planar results for five partons and W + 4 partons

[Badger, Brønnum-Hansen, Hartanto, T.P. (2017-2019)]

• all-plus five gluon non-planar [Badger, Chicherin, Gehrmann,

Heinrich, Henn, T.P., Wasser, Zhang, Zoia (2019)]

22



Cutting-edge applications of FiniteFlow

• Matter dependence of the 4-loop cusp anomalous dimension

[Henn, T.P., Stahlhofen, Wasser (2019)] ⇒ see M. Stahlhofen’s talk

23



Public codes

• FiniteFlow

https://github.com/peraro/finiteflow

• C++ code

• Mathematica interface (strongly recommended)

• FiniteFlow MathTools

https://github.com/peraro/finiteflow-mathtools

• packages FFUtils, LiteMomentum, LiteIBP, Symbols

• examples (amplitudes, IBPs, diff. equations and many more)

24

https://github.com/peraro/finiteflow
https://github.com/peraro/finiteflow-mathtools


Example of graphs in FiniteFlow

Piecing together the all-plus five gluon amplitude (only planar contributions are shown)

in

pt

sijepsibpin

sijepsdimless

ibps intgr

red

normred

25



Summary & Outlook

Summary

• Finite fields and functional reconstruction

• enhance the possibilities of our theoretical predictions

• new results unattainable with traditional computer algebra

• public code FiniteFlow

• Progress on 2-loop 5-point and other complex processes

Outlook

• More applications

• massive processes, phase-space integrals, . . .

• High level of automation for higher-loop predictions

26


