The two-loop five-gluon all-plus helicity amplitude

Dmitry Chicherin

Max Planck Institute for Physics
Munich, Germany

D.C., T. Gehrmann, J.M. Henn, P. Wasser,
Y. Zhang, S. Zoia

Phys. Rev. Lett. 123, no.4
S. Badger, D.C., T. Gehrmann, G. Heinrich,
J.M. Henn, T. Peraro, P. Wasser, Y. Zhang, S. Zoia

Phys. Rev. Lett. 123, no.7

9th September 2019, Avignon
Towards an era of precision collider measurements

- Ever improving experimental precision at the LHC

- For many QCD processes Next-to-Leading Order approximation is insufficient, e.g. strong coupling from 3-jet/2-jet ratio:

 \[\alpha_s(M_Z) = 0.1148 \pm 0.0014 \pm 0.0018 \pm 0.0050 \]

 (exp) (PDF) (theory)

 Large theoretical uncertainty!

- NNLO predictions are required to fully exploit the LHC data
Multi-jet processes at NNLO

- State of the art: two-to-two processes at NNLO

- Multi-jet processes are important for phenomenology:
 - α_s determination
 - tests of Standard Model
 - search for new physics

- Three jets: double virtual corrections (two-loop five-particle amplitudes) are major bottleneck

<table>
<thead>
<tr>
<th>process</th>
<th>known</th>
<th>desired</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \to 2$ jets</td>
<td>N^2LO_{QCD}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$NLO_{QCD}+NLO_{EW}$</td>
<td></td>
</tr>
<tr>
<td>$pp \to 3$ jets</td>
<td>NLO_{QCD}</td>
<td>N^2LO_{QCD}</td>
</tr>
</tbody>
</table>

Table I.2: Precision wish list: jet final states.

Recent progress in calculation of the two-loop five-particle amplitudes

- **All QCD amplitudes in the planar limit are known analytically** [Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov ‘19] [Abreu, Dormans, Febres Cordero, Ita, Page ‘18] Previous numerical [Badger, Brønnum-Hansen, Hartanto, Peraro ‘17][Abreu, Cordero, Ita, Page, Zeng ‘17] [Abreu, Cordero, Ita, Page, Sotnikov ‘18][Badger, Brønnum-Hansen, Gehrmann, Hartanto, Henn, Lo Presti, Peraro ‘18] and analytical results [Gehrmann, Henn, Lo Presti ‘15][Dunbar, Perkins ‘16] [Badger, Brønnum-Hansen, Hartanto, Peraro ‘18] in the planar approximation [talk by Sotnikov]

- **Full-color $\mathcal{N} = 4$ super-Yang-Mills and $\mathcal{N} = 8$ supergravity amplitudes** (at symbol level) [D.C., Gehrmann, Henn, Wasser, Zhang, Zoia ‘18 ‘19][Abreu, Dixon, Herrmann, Page, Zeng ‘18 ‘19] [talk by Page]

- **Full-color five-gluon all-plus helicity amplitude** [Badger, D.C., Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, Zoia ‘19] [this talk]

\implies Very first complete analytic two-loop five-particle amplitude!
Towards all full-color two-loop five-parton QCD amplitudes

The all-plus helicity amplitude is extremely simple – a one-line formula

Other helicity configurations are more complicated, but

- The developed tools are indispensable for all QCD amplitudes

- We calculated all two-loop master integrals for massless five-particle scattering
 - analytic results
 - high-precision numerics
 - physical scattering region
Amplitude calculation workflow

Integrand

IBP reductions

Master integrals

Amplitude
Efficient methods to construct integrands

Integrand \rightarrow IBP reductions \rightarrow Master integrals \rightarrow Amplitude

- Feynman diagrams
- Unitarity [Bern, Dixon, Dunbar, Kosower '94], Generalized unitarity [Bern, Dixon, Kosower '98][Britto, Cachazo, Feng '05][Ossola, Papadopoulos, Pittau '06], Numerical unitarity [Ita '15][Abreu, Febres, Cordero, Ita, Jaquier, Page, Zeng '17]

Integrand of the full-color two-loop five-point all-plus amplitude [Badger, Mogull, Ochirov, O’Connell ’15] contains numerators of degree five/six
Dramatic improvement of the Integration-By-Parts reduction due to finite-field arithmetics

\[
\mathcal{I}(s, \epsilon) = \sum_i c_i(s, \epsilon) g_i(s, \epsilon) , \quad D = 4 - 2\epsilon
\]

Finite fields and rational reconstruction significantly improve IBP reduction algorithms \cite{vonManteuffel-Schabinger-2015, Peraro-2016-2019, Maierhoefer-Usovitsch-2018, Smirnov-Chukharev-2019} [talk by Peraro]
The master integral families for massless two-loop five-particle scattering

[Gehrmann, Henn, Lo Presti ’15, ’18]
[Papadopoulos, Tommasini, Wever ’15]

[D.C., Mitev, Henn ’17]
[Boehm, Georgoudis, Larsen, Schoenemann, Zhang ’18]
[Abreu, Dixon, Herrmann, Page, Zeng ’18]
[D.C., Gehrmann, Henn, Lo Presti, Mitev, Wasser ’18]

[Abreu, Dixon, Herrmann, Page, Zeng ’18]
[D.C., Gehrmann, Henn, Wasser, Zhang, Zoia ’18]

All master integrals evaluate to pentagon functions
Kinematics of five-particle scattering

Massless particles: \(p_i^2 = 0 \)

Mandelstam invariants:

\[s_{ij} = (p_i + p_j)^2 \]

Five independent:

\[s_{12}, s_{23}, s_{34}, s_{45}, s_{15} \]

One pseudo-scalar:

\[\epsilon_5 \equiv i\epsilon_{\mu_1\mu_2\mu_3\mu_4} p_{1\mu_1} p_{2\mu_2} p_{3\mu_3} p_{4\mu_4} \]

Physical scattering region \(12 \rightarrow 345 \)

\[
\begin{align*}
& s_{12}, s_{34}, s_{45}, s_{35} > 0 \\
& s_{13}, s_{14}, s_{15}, s_{23}, s_{24}, s_{25} < 0 \\
& (\epsilon_5)^2 < 0
\end{align*}
\]
Pentagon functions

- Proposed in [D.C., Mitev, Henn '17]
- Confirmed in [Abreu, Dixon, Herrmann, Page, Zeng '18]
 [D.C., Gehrmann, Henn, Wasser, Zhang, Zoia '18]

Iterated integrals along path γ

$$\int_{\gamma} d \log W_{i_1}(s) \ldots d \log W_{i_n}(s)$$

$\{W_i(s)\}_{i=1}^{31}$ – functions of energies and scattering angles

n – transcendental weight

Homotopy invariance $\gamma_1 \sim \gamma_2 \Rightarrow I(\gamma_1) = I(\gamma_2)$
Pentagon alphabet

31-letter alphabet $\mathbb{A} = \left\{ W_j(s) \right\}_{j=1}^{31}$

<table>
<thead>
<tr>
<th>W_j</th>
<th>Expression</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td>$2 \ p_1 \cdot p_2$</td>
<td>+(4)</td>
</tr>
<tr>
<td>W_6</td>
<td>$2 \ p_4 \cdot (p_3 + p_5)$</td>
<td>+(4)</td>
</tr>
<tr>
<td>W_{11}</td>
<td>$2 \ p_3 \cdot (p_4 + p_5)$</td>
<td>+(4)</td>
</tr>
<tr>
<td>W_{16}</td>
<td>$2 \ p_1 \cdot p_3$</td>
<td>+(4)</td>
</tr>
<tr>
<td>W_{21}</td>
<td>$2 \ p_3 \cdot (p_1 + p_4)$</td>
<td>+(4)</td>
</tr>
<tr>
<td>W_{26}</td>
<td>$\frac{\text{tr}[(1-\gamma_5)\ p_1\ p_2\ p_4\ p_5]}{\text{tr}[(1+\gamma_5)\ p_1\ p_2\ p_4\ p_5]}$</td>
<td>+(4)</td>
</tr>
<tr>
<td>W_{31}</td>
<td>ϵ_5</td>
<td></td>
</tr>
</tbody>
</table>

- The alphabet splits into orbits of \mathbb{Z}_5
- Invariance under S_5
- 26 parity-even and 5 parity-odd letters
- Zero loci of letters: branch points of the master integrals
Iterated integrals in terms of familiar functions

- **One-fold integrals**: Logarithms, e.g.
 \[\log(s_{12}), \log(-s_{23}), \ldots \]

- **Two-fold integrals**: Dilogarithms, e.g.
 \[\text{Li}_2 \left(1 - \frac{s_{34}}{s_{12}} \right), \log(-s_{13}) \log(s_{34}), \ldots \]

- **Multi-fold integrals**: Goncharov polylogarithms
 - Well-studied functions in math and HEP
 - Fast numerical routines (GiNaC) [Vollinga, Weinzierl '04]

- **Planar sector**: well-studied and fast numerical implementation [Gehrmann, Henn, Lo Presti '18]
Master integrals from differential equations

Change of master integral basis \vec{f} enormously simplifies DE [Henn '13]

\[df(s, \epsilon) = \epsilon d\tilde{A}(s) f(s, \epsilon) \]

Solution has uniform transcendentality

\[\vec{f}(s, \epsilon) = \text{Pexp}\left(\epsilon \int_{\gamma} d\tilde{A}(s)\right) \vec{f}(s_0, \epsilon) \quad \rightarrow \quad \text{Pentagon functions} \]

✓ Construction of the canonical basis:

○ Algorithm to find 4D dlog integrals [Wasser '16]

○ D-dimensional leading singularities based on the Baikov parametrization

✓ Absence of spurious singularities \implies boundary constants $\vec{f}(s_0, \epsilon)$
From analytic formulae to numeric values

$$\text{Re } f_{101}^{(4)} \quad z \quad \text{Im } f_{101}^{(4)}$$

$$f_{101} = \sum_{w \geq 0} \frac{1}{\epsilon^{4-w}} f_{101}^{(w)}$$

- High-precision evaluation (GiNaC)
- Checks using SecDec

Evaluate $f_{101}^{(4)}$ along the path in kinematic space

$$s_{13} = 3$$
$$s_{23} = -1 + \frac{z}{1 + z^2}$$
$$s_{34} = 1$$
$$s_{45} = 1$$
$$s_{15} = -1 - \frac{z}{1 + z^2}, \quad 0 < z < 1$$
Assembly of the amplitude

Integrand \rightarrow IBP reductions \rightarrow Master integrals \rightarrow Amplitude

The amplitude is much simpler than the ingredients!

Naive assembly of the amplitude is impossible because of the size and complexity of the ingredients. Additional steps are needed:

• IR-subtraction \Rightarrow hard function
• Basis of rational factors
• Rational reconstruction
Factorization of the Infrared divergences

\[\mathcal{A}(\epsilon) = \mathcal{Z}(\epsilon) \cdot \mathcal{A}^f(\epsilon) \]

- Matrix in color space, captures all \(\epsilon \)-poles
- finite at \(\epsilon \rightarrow 0 \)

Hard function is finite

\[\mathcal{H} = \lim_{\epsilon \rightarrow 0} \mathcal{A}^f(\epsilon) \]

- Simpler than the amplitude
- Truly new piece of information
- Relevant for cross sections
New result: non-planar two-loop hard function

\[\mathcal{H}^{(2)}_{\text{double trace}} = \sum_{S_5 / \Sigma} \text{Tr}(12) [\text{Tr}(345) - \text{Tr}(543)] \sum_{\Sigma} \left\{ 6\kappa^2 \left[\frac{\langle 24 \rangle [14][23]}{\langle 12 \rangle \langle 23 \rangle \langle 45 \rangle^2} + 9 \frac{\langle 24 \rangle [12][23]}{\langle 12 \rangle \langle 34 \rangle \langle 45 \rangle^2} \right] \right. \\
+ \kappa \frac{[15]^2}{\langle 23 \rangle \langle 34 \rangle \langle 42 \rangle} \left[l_{234;15} + l_{243;15} - l_{324;15} - 4l_{345;12} - 4l_{354;12} - 4l_{435;12} \right] \right\} \]

Finite part of the one-mass box function:

\[I_{123;45} = \text{Li}_2 \left(1 - \frac{s_{12}}{s_{45}} \right) + \text{Li}_2 \left(1 - \frac{s_{23}}{s_{45}} \right) + \log^2 \left(\frac{s_{12}}{s_{23}} \right) + \frac{\pi^2}{6} \]

Spinor-helicity variables: \(\langle ij \rangle = \sqrt{s_{ij}} e^{i\varphi_{ij}} \) and \([ij] = \sqrt{s_{ij}} e^{-i\varphi_{ij}} \)

Gluon spin dimension: \(\kappa \equiv \frac{g_{\mu\mu} - 2}{6} \)

- Weight-1,3,4 iterated integrals canceled out
- Analytic continuation to other regions is straightforward \(s_{ij} \to s_{ij} + i0 \)
- Correct factorization in the collinear limits
Summary

• First **analytic** result for full-color five-particle two-loop amplitude

 ✓ Functional level

 ✓ Nonplanar

• All master integrals for 3-jet production at NNLO are known **analytically**

• Pentagon functions describe all massless five-particle two-loop amplitudes